Обґрунтування необхідності створення робото-технічних комплексів для гуманітарного розмінування

 

Невлюдов Ігор Шакірович

Харківський національний університет радіоелектроніки

http://orcid.org/0000-0002-9837-2309

 

Янушкевич Дмитро Анатолійович

Харківський національний університет радіоелектроніки

http://orcid.org/0000-0003-3684-518X

 

Толкунов Ігор Олександрович

Національний університет цивільного захисту України

http://orcid.org/0000-0001-5129-3120

 

Попов Іван Іванович

Національний університет цивільного захисту України

http://orcid.org/0000-0003-4705-4404

 

Іванець Григорій Володимирович

Національний університет цивільного захисту України

http://orcid.org/0000-0002-4906-5265

 

DOI: https://doi.org/10.52363/2524-0226-2023-38-2

 

Ключові слова: гуманітарне розмінування, робото-технічний комплекс, нетехнічне та технічне обстеження територій, вибухонебезпечний предмет

 

Анотація

 

Проведено дослідження робото-технічних комплексів військового, спеціального або подвійного призначення, які застосовуються у системі гуманітарного розмінування. Визначено, що система гуманітарного розмінування передбачає виконання наступних завдань: обстеження об’єктів та місцевості, забруднених вибухонебезпечними предметами; їх пошук, дистанційна ідентифікація, знешкодження та знищення; картографування та маркування небезпечних територій тощо. У зв’язку з цим доведено, що для проведення гуманітарного розмінування доцільним буде використання робото-технічних комплексів спеціального призначення, які повинні бути оснащеними маніпуляторами та детекторами (сенсорами, датчиками), засобами прийняття рішень на всіх етапах виконання робіт. Розроблено математичну модель і керуючий алгоритм щодо очищення від вибухонебезпечних предметів території бойових дій з використанням робото-технічних комплексів, які реалізують принцип комплексного підходу до вирішення проблеми очищення територій України. Запропонована математична модель уявляє собою сукупність об’єднання взаємозв’язаних моделей: оцінки термінів вирішення проблеми очищення від вибухонебезпечних предметів території бойових дій, загальної кількості особового складу та технічного оснащення підрозділів для виконання поставлених завдань. За результатами дослідження запропоновано рекомендації щодо використання сучасних робото-технічних комплексів у гуманітарному розмінуванні та встановлено, що для підвищення ефективності виявлення вибухонебезпечних предметів доцільне комплексне використання різних методів пошуку в одному робото-технічному комплексі. Одним з найбільш перспективних методів є застосування комбінації електромагнітного, оптичного та механічного методів, а також розробка комплексів, здатних здійснювати пошук, знешкодження та знищення вибухонебезпечних предметів не тільки на поверхні ґрунту, але і на певній глибині.

 

Посилання

 

  1. Tarhan M. Invisible Death: Antipersonnel mines continue to claim thousands of lives.Anadolu agency. URL: https://bit.ly/352MG61
  2. Manjula Udayanga Hemapala. Robots for Humanitarian Demining. Submitted: 25th October, 2016; Reviewed: 29th June, 2017; Published: 20th December, 2017. doi: 10.5772/intechopen.70246
  3. Florez J., Parra C. Review of sensors used in robotics for humanitarian demining application. Colombian Conference on Robotics and Automation (CCRA); 29–30 September, 2016. Bogota: IEEE, 2016. P.1-6
  4. Koppetch K. Mechanical Demining Equipment Catalogue [Internet]. Geneva: GICHD. 2019. URL: http://www.eudem.vub.ac.be/publications/publication.asp?pub_id=14
  5. Trevelyan J., Hamel W.R., Kang S.C. Robotics in hazardous applications. Springer Handbook of Robotics. Springer International Publishing. London: 2016. P.1521–
  6. Cepolinaa E., Bruschini C., De Bruyn K. Providing demining technology end-users need. In: Proceeding of the IARP International workshop on Robotics and Mechanical Assistance in Humanitarian Demining (HUDEM2005). Tokyo Denki University, 21–23 June, 2005. Tokyo, Japan: 2005. Р.9– URL: https://www.gichd.org/fileadmin/pdf/LIMA/HUDEM2005.pdf
  7. Струтинський В. Б., Юрчишин О. Я. , Кравець О. М. Розвиток основних положень проектування маніпуляторів мобільних роботів спеціального призначення адаптованих для роботи з небезпечними об’єктами. Матеріали XXII міжнародної НТК «Прогресивна техніка, технологія та інженерна освіта». Київ: КПІ ім. Ігоря Сікорського. 2021. С. 129–131. URL: http://conf.mmi.kpi.ua/proc/article/view/239152
  8. Furuta K., Ishikawa J. Anti-personnel Landmine Detection for Humanitarian Demining. London: Springer, 2009. URL: https://commons.lib.jmu.edu/cgi/ viewcontent.cgi?article=1483&context=cisr-journal
  9. Kasban H., Zahran O., Sayed M. Elaraby, M. El-Kordy, F. E. Abd El-Samie. A Comparative Study of Landmine Detection Techniques. An International Journal Sensing and Imaging. 2010. Vol. 11. Р. 89–112. URL: https://www.researchgate.net/publication/225752842_A_Comparative_Study_of_Landmine_Detection_Techniques
  10. Янушкевич Д. А., Іванов Л. С. Роботизовані засоби спеціального призначення: аналіз міжнародних нормативних документів. Виробництво & Мехатронні Системи 2021. Матеріали V Міжнародної конференції. Харків, ХНУРЕ. 2021. С. 176–179. URL: https://nure.ua/wp-content/uploads/2021/M&MS-2021/zbirnik-_m-ms_2021.pdf
  11. Янушкевич Д. А., Іванов Л. С. Сучасні тенденції застосування роботизованих систем для гуманітарного розмінування. Збірник матеріалів ІIІ форуму «Автоматизація, електроніка та робототехніка. Стратегії розвитку та інноваційні технології» AERT-2021. URL: https://mts.nure.ua/conferences-ua/forum/aert-2021
  12. Freese M., Matsuzawa T., Oishi Y., Debenest P., Takita K., Fukushima E.F., Hirose S. Robotics-assisted demining with gryphon. Advanced Robotics. 01 January, 2007. Tokyo, Japan. 2007. 21(15). Р. 1763–1786. URL: https://ru.booksc.eu/book/36010951/4c0f48TALON Small Mobile Robot URL: https://www.globalsecurity.org/military/
    systems/ground/talon.htm
  13. Foster-Miller unveils TALON robot that detects chemicals, gases, radiation and heat. URL: https://bit.ly/3FrZ1Rm
  14. Dragon Runner 6×6. URL: https://bit.ly/3xsWxQ2
  15. Warrior 710. URL: http://www.army-guide.com/rus/ product4994.html
  16. Наземні бойові роботи: лідери та Україна. URL: https://lb.ua/news/2021/11/17/498795_nazemni_boyovi_roboti_lideri.html

 

Model for choosing optimal water flow rate for tank wall cooling

 

Basmanov Oleksii

National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-6434-6575

 

Maksymenko Maksym

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-1888-4815

 

DOI: https://doi.org/10.52363/2524-0226-2023-38-1

 

Keywords: tank fire, thermal influence of fire, heat transfer, water cooling, water flow rate

 

Аnnotation

 

In this paper, we have considered the problem of choosing the optimal water flow rate for cooling the tank wall with water in the event of a fire in the adjacent tank. The optimal water flow rate is understood as the minimal flow ensuring a sufficient level of cooling. The choice of the water flow rate is based on the solution of the thermal balance equation for the tank wall and the thermal balance equation for the water film. The model takes into account the radiant heat transfer between the flame, the tank wall, the environment and the internal space of the tank. The convective heat transfer from the tank wall to water and vapor-air mixture is also taken into account. Here, we have developed an algorithm for determining the optimal water flow for cooling the tank wall. Solving the problem of choosing the rate of the cooling water flow is reduced to the sequential solution of the problems to determine the temperature distribution along the tank wall and the water film. We have constructed the functional dependence of optimal water flow rate for tank cooling on the direction and velocity of the wind. The inclination of the flame by the wind towards the adjacent tank increases the relevant heat influx, which requires a greater intensity of cooling. On the contrary, when the direction of the wind is away from the adjacent tank, the heat flux decreases. At the same time, for wind velocity greater than a certain value, the heat flux decreases to such an extent that there is no more need to cool the walls of the adjacent tank. With the perpendicular direction of the wind, at certain velocity values, there is no need to cool the walls of the adjacent tank either. The obtained results can be used to determine the rate of water flow for cooling the tank wall in the event of a fire in an adjacent tank.

 

References

 

  1. Yang,, Khan, F., Neto, E. T., Rusli, R., Ji, J. (2020) Could pool fire alone cause a domino effect? Reliability Engineering & System Safety, 202, 106976. doi: 10.1016/j.ress.2020.106976
  2. Reniers, G., Cozzani, V. (2013). Features of Escalation Scenarios. Domino Effects in the Process Industries. Elsevier, 30–42. doi: 1016/B978-0-444-54323-3.00003-8
  3. Huang, K., Chen, G., Khan, F., Yang, Y. (2021). Dynamic analysis for fire-induced domino effects in chemical process industries. Process Safety and Environmental Protection, 148, 686–697. doi: 1016/j.psep.2021.01.042
  4. Hemmatian, B., Abdolhamidzadeh, B., Darbra, R., Casal, J. (2014). The significance of domino effect in chemical accidents. Journal of Loss Prevention in the Process Industries, 29, 30–38. doi: 10.1016/j.jlp.2014.01.003
  5. Wu, B., Roy, S. P., Zhao, X. (2020). Detailed modeling of a small-scale turbulent pool fire. Combustion and Flame, 214, 224–237. doi: 10.1016/j.combustflame.2019.12.034
  6. Shi, C., Liu, W., Hong, W., Zhong, M., Zhang, X. (2019). A modified thermal radiation model with multiple factors for investigating temperature rise around pool fire. Journal of Hazardous Materials, 379, 120801. doi: 10.1016/j.jhazmat.2019.120801
  7. Ahmadi, O., Mortazavi, S. B., Pasdarshahri, H., Mohabadi, H. A. (2019). Consequence analysis of large-scale pool fire in oil storage terminal based on computational fluid dynamic (CFD). Process Safety and Environmental Protection, 123,379–389. doi: 10.1016/j.psep.2019.01.006
  8. Li, Y., Jiang, J., Zhang, Q., Yu, Y., Wang, Z., Liu, H., Shu, C.-M. (2019). Static and dynamic flame model effects on thermal buckling: Fixed-roof tanks adjacent to an ethanol pool-fire. Process Safety and Environmental Protection, 127,23–35. doi: 10.1016/j.psep.2019.05.001
  9. Yi, H., Feng, Y., Wang, Q. (2019). Computational fluid dynamics (CFD) study of heat radiation from large liquefied petroleum gas (LPG) pool fires. Journal of Loss Prevention in the Process Industries, 61, 262–274. doi: 10.1016/j.jlp.2019.06.015
  10. Elhelw, M., El-Shobaky, A., Attia, A., El-Maghlany, W. M. (2021). Advanced dynamic modeling study of fire and smoke of crude oil storage tanks. Process Safety and Environmental Protection, 46, 670–685. doi: 10.1016/j.psep.2020.12.002
  11. Wang, J., Wang, M., Yu, X., Zong R., Lu, S. (2022). Experimental and numerical study of the fire behavior of a tank with oil leaking and burning. Process Safety and Environmental Protection, 159, 1203–1214. doi: 10.1016/j.psep.2022.01.047
  12. Semerak,, Pozdeev, S., Yakovchuk, R., Nekora, O., Sviatkevich, O. (2018). Mathematical modeling of thermal fire effect on tanks with oil products. MATEC Web of Conferences, 247(00040). doi: 10.1051/matecconf/201824700040
  13. Abramov, Y. A., Basmanov, O. E., Mikhayluk, A. A., Salamov, J. (2018). Model of thermal effect of fire within a dike on the oil tank. Naukovyi Visnyk NHU, 2, 95–100. doi: 10.29202/nvngu/2018-2/12
  14. Basmanov, O., Maksymenko, M. (2022). Modeling the thermal effect of fire to the adjacent tank in the presence of wind. Problems of emergency situations, 1(35), 239–253. doi: 10.52363/2524-0226-2022-35-18
  15. Wu, Z., Hou, L., Wu, S., Wu, X., Liu, F. (2020). The time-to-failure assessment of large crude oil storage tank exposed to pool fire. Fire Safety Journal, 117 (103192). doi: 10.1016/j.firesaf.2020.103192.
  16. Espinosa, N., Jaca, R. C., Godoy, L. A. (2019). Thermal effects of fire on a nearby fuel storage tank. Journal of Loss Prevention in the Process Industries,62(103990). doi:10.1016/j.jlp.2019.103990
  17. Maksymenko, M. (2023). A model of cooling the tank shell by water in the case of a fire in an adjacent tank. Problems of emergency situations, 1 (37), 156– doi: 10.52363/2524-0226-2023-37-11
  18. Abramov, Y., Basmanov, O., Salamov, J., Mikhayluk, A., Yashchenko, O. (2019). Developing a model of tank cooling by water jets from hydraulic monitors under conditions of fire. Eastern-European Journal of Enterprise Technologies, Ecology, 1/10 (97), 14–20. doi: 15587/1729-4061.2019.154669
  19. Fire Fighting Leader Handbook. (2017). Kyiv book and magazine factory, 2017, 320
  20. Zhang, X., Hu, L., Wu, L., Kostiuk, L. W. (2019). Flame radiation emission from pool fires under the influence of cross airflow and ambient pressure. Combustion and Flame, 202, 243–251. doi: 10.1016/j.combustflame.2019.01.015

 

Quantitative control of technological haracteristics of activated sludge in environmental biotechnologies

 

Valentyna Iurchenko

M. Beketov National University of Urban Economy in Kharkiv

http://orcid.org/0000-0001-7123-710X

 

Svetlana Tkachenko

M. Beketov National University of Urban Economy in Kharkiv

http://orcid.org/0000-0001-9542-5869

 

Yulia Levashova

M. Beketov National University of Urban Economy in Kharkiv

http://orcid.org/0000-0001-6323-2114

 

Natalia Kosenko

M. Beketov National University of Urban Economy in Kharkiv

http://orcid.org/0000-0002-4554-0305

 

Oksana Melnikova

M. Beketov National University of Urban Economy in Kharkiv

http://orcid.org/0000-0001-5649-2997

 

Ganna Chernyshenko

M. Beketov National University of Urban Economy in Kharkiv

http://orcid.org/0000-0002-0685-925X

 

DOI: https://doi.org/10.52363/2524-0226-2023-37-24

 

Keywords: activated sludge, flakes, technological characteristics, shape, dimensions, structure, sedimentation properties, adhesion

 

Аnnotation

 

For the quantitative control of the technological characteristics of activated sludge in biological treatment plants, a computerized method was developed as part of the presented research, the use of which increases the reliability and man-made safety of the operation of biological treatment plants. The methodology is based on the quantitative determination of geometric (area, volume) and morphological (shape and structure) characteristics of activated sludge flakes during the processing of microphotographs of sludge in the Image J software product. Photographing of microscopic images of sludge was performed at a magnification of 100 times and zoomed using micrometer eyepiece. Currently, the morphological characteristics of activated sludge are determined only visually, which does not allow averaging the data of a large number of samples and generally determines the subjective nature of the assessments. Studies of sludge flakes in adhesions on membranes of a membrane biological reactor showed that flakes from the surface aerobic zone of adhesions have a somewhat rounder shape, smaller linear dimensions, area and volume than sludge flakes from the anaerobic zone in the depth of adhe-sions. Studies of the effect of magnesium ions on the properties of activated sludge flakes showed that with an increase in the concentration of magnesium in the sludge liquid, there is a decrease in the roundness of the flakes, a slight deterioration of the structure, but there is a much more significant increase in linear dimensions (by almost 60 %), area (by 134 %) and extraordinary increase (by 275 %) in the volume of flakes. These indicators indicate an improvement in the technological properties of the flakes and a reduction in their ability to stick to the reactor membranes. The developed computerized technique makes it possible to significantly detail and clarify the results of visual evaluations of the technological characteristics of activated sludge flakes and to detect the smallest changes in the morphological indicators of flakes in various wastewater treatment technologies in a large array of data.

 

References

 

  1. Sustainable Cities And Towns Campaign Available at: https://sustainableeu/sustainable-cities-platform/
  2. Burkinsky, B. V, Stepanov, V. N. Kharichkov, S. K. (2005). Economic and ecological foundations of regional nature management and development. Odesa: Phoenix, 575. Available at: https://nvd-nanu.org.ua/d578f989-9d9f-e859-760b-dd2853739841/
  3. Zgurovsky, M. Z. (2009). Sustainable development of the regions of Ukraine. Kiev: NTUU «KPI», 197. Available at: http://irbis-nbuv.gov.ua/ulib/item/ukr0000013879
  4. Henze, M., Harremoës, P., Jansen, J. l. C., Arvin E. (2002). Wastewater Treatment: Biological and Chemical Processes. Berlin; New York: Springer, 430. Available at: https://
    dtu.dk/en/publications/wastewater-treatment-biological-and-chemical-processes-2
  5. Zhmur, N. S. (2003). Technological and biochemical processes of wastewater treatment at facilities with aerotanks. Moscow: AQUAROS, 512. Available at: https://elima.ru/books/?id=5483
  6. Blinova, N. K., Kravchenko, A. (2018). Modern problems of biological wastewater treatment and ways to solve them. Visnik of the Volodymyr Dahl east Ukrainian national university, 3(244), 14. Available at: https://deps.snu.edu.ua/media/filer_public/35/56/3556d222-10ff-4466-939f-18fc2496c428/visnik_3_244_.pdf
  7. Eikelboom, D. (2000). Process Control of Activated Sludge Plants by Microscopic Investigation. London: IWA Publishing, 163. Available at: https://www.
    com/sites/default/files/ebooks/9781900222297.pdf
  8. Mark, C. M. van Loosdrecht, Per H. Nielsen, Carlos, M. Lopez-Vazquez and Damir Brdjanovic. (2005). Experimental Methods In Wastewater Treatment. Published by IWA Publishing, London, UK, 362. Available at: https://experimentalmethods.org/wp-content/uploads/2018/01/Experimental-Methods-in-Wastewater-Treatment.pdf
  9. Jenneé, R., Banadda, E., Smets, I., Van Impe, J. (2007). Monitoring activated sludge settling properties using image analysis. Water Science Technology, 50(7), 281. doi: 10.2166/wst.2004.0471
  10. Xu, D., Li, J., Ma, T. (2021). Rapid aerobic sludge granulation in an integrated oxidation ditch with two-zone clarifiers. Water Research, 175. doi: 10.1016/j.watres.2020.115704
  11. D’Antoni, B.M., Iracà, F., Romero, M. (2017). Filamentous foaming and bulking in activated sludge treatments: causes and mitigation actions. Brief review. doi: 10.13140/RG.2.2.29506.58560
  12. Sam, T., Le Roes-Hill, M., Hoosain, N., Welz, P. (2022). Strategies for controlling filamentous bulking in activated sludge wastewater treatment plants: the old and the new J. Water, 14(20), 3223. doi: 10.3390/w14203223
  13. Ai, S., Du, L., Wang, Z., Shao, L., Kang, H., Wang, F. and Bian, D. (2021). Effect of controlling filamentous bulking sludge by Sequencing Batch Reactor Activated Sludge Process, E3S Web of Conferences, 261, 04031. doi: 10.1051/e3sconf/202126104031
  14. Shchetinin, A. I., Yurchenko, V. A., Malbiev, B. Y., Mikhnev, A. N., Melnik, A., Korobkina, I. A. (2006). Filamentous activated sludge bulking and the effect of nutrient removal J. Chemistry and technology of water, 259(4), 83. Available at: http://jwct.org.ua/uk/home-uk.html
  15. Gulshin, I. (2017). The settling behavior of an activated sludge with simultaneous nitrification and denitrification. Matec Web of Conferences, 106. doi: 10.1051/matecconf/201710607002
  16. Mesquita, D. P., Amaral, A. L., Ferreira, E. C. (2013). Activated sludge characterization through microscopy: a review on quantitative image analysis and chemometric techniques. Analytica Chimica Acta, 802, 14. doi: 10.1016/j.aca.2013.09.016
  17. Mikkelsen, L. H., Keiding, K. (2002). The shear sensitivity of activated sludge: an evaluation of the possibility for a standardised floc strength test. Water Research, 36, 2931. doi: 10.1016/S0043-1354(01)00518-8
  18. Van Dierdonck, J., den Broeck, R., Vansant, A., Van Impe, J., Smets, I. (2013). Microscopic image analysis versus sludge volume index to monitor activated sludge bioflocculation: a case study. Separation Science and Technology, 48, 1433. doi: 10.1080/01496395.2013.767836
  19. Winkler, M. K., Kleerebezem, R., Strous, M., Chandran, K., van Loos-drecht, (2013). Factors influencing the density of aerobic granular sludge. Applied Microbiology and Biotechnology, 97.7459-7468. doi: 10.1007/s00253-012-4459-4
  20. Jan Hoinkisa, Shamim A. Deowan, Volker Panten, Alberto Figoli, Rong Rong Huang (2012). Enrico Drioli, Membrane Bioreactor (MBR) Technology – a Promising Approach for Industrial Water Reuse. Procedia Engineering, 33, 234. doi: 10.1016/j.proeng.2012.01.1199
  21. Aslam, M., Charfi, A., Lesage, G., Heran, M., Kim, J. (2017). Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling. Chemical Engineering Journal, 307, 897–913. doi: 10.1016/j.cej.2016.08.144
  22. Arabi S., Nakhla G. (2009). Impact of cation concentrations on fouling in membrane bioreactors Journal of Membrane Science, 343, 110–118. doi: 10.1016/j.memsci.2009.07.016

 

Determination based on the Nusselt method  heat flow from surface rotation

 

Leonid Kutsenko

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0003-1554-8848

 

Andrii Kalinovsky

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-1021-5799

 

Elena Sukharkova

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0003-1033-4728

 

Svitlana Bordiuzhenko

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0001-6426-3473

 

Maxim Zhuravskij

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0001-8356-8600

 

DOI: https://doi.org/10.52363/2524-0226-2023-37-25

 

Keywords: radiative heat transfer, surface of rotation, flame torch shape, Nusselt method, radial-parallel projection

 

Аnnotation

 

An approximate method for the numerical determination of the heat flux, which is radiated by a surface of revolution, and which reaches a figure of a given shape on the coordinate plane, is considered. The method is based on a graphical-analytical method for an approximate estimate of the heat flux (the Nusselt method or the unit-radius sphere method). Graph-analytical actions consist in the construction and description of a radial-parallel projection of the radiation source, directed to the figure of the heat receiver. As a result, we obtain a projection of the radiation source, the area of which must be compared with the area of a circle of unit radius that envelops it. The numerical value of the ratio of these areas will determine the measure of heat that will reach a certain point in the figure of the heat sink (local angular coefficient of radiation). But the application of the Nusselt method in such a "natural" interpretation in practice is associated with difficulties in calculating the indicated areas. The reason is the incomparable distances between the nodal points of the radial-parallel projection and the distances to the surface of revolution. To implement the Nusselt method in practice, it is necessary to generalize the scheme for describing and constructing a radially parallel projection of a radiation source. In the paper, a description of the radially parallel projection of coaxial circles located on the level planes of the surface of revolution, a description of the radially parallel projection of the axial vertical section of the surface of revolution, as well as formulas for calculating the integral angular coefficients of radiation for the considered case of surfaces are found. This problem was solved by using a projection relationship between an object and its radial-parallel projection. The results obtained can be used in practice in the form of a system for modeling and predicting emergency situations that occur on gas pipelines to assess heat flows from a virtual flame to the surfaces of buildings and structures.

 

References

 

  1. Makarov, A. N. (2014). Theory of radiative heat exchange in furnaces, fire boxes, combustion chambers is replenished by four new laws. Science Discovery, 2(2), 34–42. doi: 10.11648/j.sd.20140202.12
  2. Makarov, A. N. (2019). Calculations of heat transfer in torch furnaces under the laws of radiation from gas volumes. Journal of applied physics & nanotechnology, 2(1), 1–10. doi: 10.4236/wjet.2016.43049
  3. Makarov, A. N. (2016). Modeling of a torch and calculations of heat transfer in furnaces, fire boxes, combustion chambers. Part I. Calculations of radiation from solids and gas volumes by the laws of radiation from solid bodies. International Journal of Advanced Engineering Research and Science, 3(12), 44–48. doi: 10.22161/ijaers/3.12.9
  4. Makarov, A. N. (2016). Modeling of a torch and calculations of heat transfer in furnaces, fire boxes, combustion chambers. Part II. Calculations of radiation from gas volumes by the laws of radiation from cylinder gas volumes. International Journal of Advanced Engineering Research and Science, 3(12), 49–54. doi: 10.22161/ijaers/3.12.10
  5. Makarov, A. N. (2014). Regularities of heat transfer in the gas layers of a steam boiler furnace flame. Part II. Gas layer radiation laws and the procedure for calculating heat transfer in furnaces, fire boxes, and combustion chambers developed on the basis of these laws, thermal engineering. Thermal Engineering, 61(10), 717–723.
  6. Makarov, A. N. (2020). Determination of angular coefficients of thermal radiation of a torch on a heating surface, arranged parallel to the axis of the torch. JP Journal of Heat and Mass Transfer, 21(2), 251–262. doi: 10.17654/HM021020251
  7. Skovorodkin, A. I. (1976). Calculating angular radiation coefficients by the method of flow algebra. Journal of engineering physics, 30, 722724.
  8. Diaconu, B., Cruceru, M., Paliţă, V., Racoceanu, C. (2003). Radiative heat transfer equation in systems of grey-diffuse surfaces separated by non-participating media. 50 years University of Mining and Geology «St. Ivan Rilski». Part ІІ. Mining and Mineral Processing, 46, 243–246.
  9. Dulskiy, E., Ivanov, P., Khudonogov, A., Kruchek, V., Khamnaeva, A. (2019). Method of infrared reflectors choice for electrotechnical polymeric insulation energy-efficient drying. International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies, 515–529.
  10. Kabakov, Z., Gabelaya, D. (2013). Calculation of the angular coefficient of thermal radiation from the surface of continuous casting billet onto the support rollers with the screening effect of adjacent rollers. International Journal Of Applied And Fundamental Research, 2. Available at: http://www.science-sd.com/455-24249
  11. González, M. M., Hinojosa, J. F., Estrada, C. A. (2012). Numerical study of heat transfer by natural convection and surface thermal radiation in an open cavity receiver. Solar Energy, April 2012, 86(4), 1118–1128.
  12. Popov V.M. (2002). Metod otsinky teplovoho potoku, shcho vyprominyuyet sya poverkhneyu obertannya yak fakelom polumya. Avtoref. dys. k.t.n. spets. 05.01.01, Available at: https://revolution.allbest.ru/programming/00429032_0.html 
  13. Popov, V., Kutsenko, L., Semenova-Kulish, V. (2000). Metod otsinky teplovoho potoku, shcho vyprominyuyetsya elipsoyidom yak fakelom polumya. Kharkiv: KHIPB MVS Ukrayiny, 144.
  14. Blokh, A., Zhuravlev, Y., Ryzhkov, L. (1991). Teploobmen yzluchenyem. Spravochnyk. M.: Énerhoatomyzdat, 432.

 

Simulation of the movement of an unmanned aircraft in the emergency zone

 

Oleksandr Kovalev

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-4974-5201

 

Ihor Neklonskyi

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-5561-4945

 

DOI: https://doi.org/10.52363/2524-0226-2023-37-23

 

Keywords: unmanned aerial vehicle, motion simulation, model, destination point, coordinates, maneuver

 

Аnnotation

 

The work reveals problematic issues related to the introduction of unmanned aerial vehicles into the system of operational actions of civil defense units and the integration of their use into a single management system for liquidation of an emergency situation. A mathematical model for simulating the movement of unmanned aerial vehicles in a high-quality zone has been developed. It is supposed to be used in the process of exchanging information between the elements of the automated control system. This model makes it possible to make a logical conclusion about the achievement of the required destination point by the air object. The model description algorithm is reduced to the analytical movement of an aerial object with the corresponding possible maneuver in the geographic coordinate system. The work of the model can take place in several cycles. Reproduction of the movement of an aerial object is carried out taking into account all types of maneuver. With this, each point of movement change will be considered as an intermediate point of the object, the final destination point has not been reached. The conditions under which the air object will reach the desired destination point are given. It is substantiated that their correct application will be only within a clear section of changes in the calculation parame-ters of search and rescue operations. The model allows for multiple calculations based on different options for the input data set. The model can be used as a separate block of the model of operational actions, which is conducted by all active elements of the system. The proposed approach makes it possible to improve the management of operational actions of rescue formations. The obtained results can be considered as a component of the information model of preparation and decision-making processes..

 

References

 

  1. Drone rescues mapped. Available at: https://enterprise.dji.com/drone-rescue-map
  2. MOBNET. Available at: http://mobnet-h2020.eu
  3. Drobakha, H., Neklonskyi, I., Kateshchenok, A., Sobyna, V., Taraduda, D., Borysova, L., Lysachenko, I. (2019). Structural and functional simulation of interaction in the field of aviation safety by using matrices. Archives of Materials Science and Engineering, 2(95), 74–84. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/9000
  4. Ausonio, E., Bagnerini, P., Ghio, M. (2021). Drone Swarms in Fire Suppression Activities: A Conceptual Framework. Drones, 5(1), 17. doi: 10.3390/drones5010017
  5. Kinaneva, D., Hristov, G., Raychev, J., Zahariev, P. (2019). Early Forest Fire Detection Using Drones and Artificial Intelligence. 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE. doi: 10.23919/MIPRO.2019.8756696
  6. Turner, J. The drones being developed to inspect Fukushima. NS ENERGY : Available at: https://www.nsenergybusiness.com/news/fukushima-daiichi-drones/
  7. Bednář, D., Otáhal, P., Němeček, L., Geršlová, E. (2020). The analytical approach of Drone use in radiation monitoring. Radioprotection, 56(1), 61–67. doi: 10.1051/radiopro/2020066
  8. Rahmaniar, W., Wang, W.-J., Chen, H.-C. (2019). Real-Time Detection and Recognition of Multiple Moving Objects for Aerial Surveillance. Electronics, 8(12), 1373. doi: 10.3390/electronics8121373
  9. Husak, O. M. (2018). Information technology for early detection of forest fires using unmanned aerial vehicles. (Diss. Ph.D.). Lviv University of Life Safety, Lviv. Available at: https://sci.ldubgd.edu.ua/handle/123456789/5576
  10. Zakharchenko, Y. V., Ivanets, G. V., Ivanets, M. G., Kalugin, V. D., Tyutyunyk, V. V. (2022). Formation of flight paths of unmanned aerial vehicles during operational monitoring of a separate area where an emergency environmental situation occurred. Technological and environmental safety, (11 (1/2022)), 23–33. doi: 10.52363/2522-1892.2022.1.4
  11. Mellinge, D., Michael, N., Kumar, V. (2012). Trajectory generation and control for precise aggressive maneuvers with quadrotors. The International Journal of Robotics Research, 31(5), 664–674. doi: 10.1177/0278364911434236
  12. Beard, R. W., McLain, T. W. (2012). Small Unmanned Aircraft: Theory and Practice. Princeton University Press. Available at: https://www.perlego.com/book/
    735217/small-unmanned-aircraft-theory-and-practice-pdf.
  13. Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., Burgard, W. (2013). OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots, 34(3), 189–206.  doi: 10.1007/s10514-012-9321-0
  14. Rachmanto, A. D., Iswanto, I., Hernawati, H. (2020). Simulation and modeling of aircraft movements passing through VOR. IOP Conference Series: Materials Science and Engineering, 830, 032021. doi:10.1088/1757-899X/830/3/032021
  15. Robinson, John W. C. (2012). A Generic Model of Aircraft Dynamics. FOI Swedish Defence Research Agency. Available at: https://www.foi.se/rest-api/report/FOI-R--3185--SE
  16. Drone Simulation. Simulate drone algorithms in a virtual environment. Available at: https://www.mathworks.com/discovery/drone-simulation.html
  17. Krzysztofik, I., Koruba, Z. (2014). Mathematical Model of Movement of the Observation and Tracking Head of an Unmanned Aerial Vehicle Performing Ground Target Search and Tracking. Journal of Applied Mathematics, 2014, 1–11. doi: 10.1155/2014/934250
  18. Kraszewski, T., Czopik, G. (2020). The air object tracking in 3D space using distance measurements. Radioelectronic Systems Conference 2019. SPIE. doi: 10.1117/12.2565281
  19. Sukonko, S. M., Lunyov, O. Yu., Matsyuk, V. V. (2021). Model for determining the necessary number of forces and means for monitoring the operational situation by military units of the National Guard of Ukraine during mass events. Honor and law, (77), 58–64. Available at: http://chiz.nangu.edu.ua/article/view/237386
  20. 20. Poteryaiko, S., Belikova, K., Tverdokhlib, O., Orlova, N. (2022). Economic-mathematical modeling of predictive assessment of the effectiveness of the functioning of the unified state system of civil protection. Financial and Credit Activity Problems of Theory and Practice, 1(42), 293–303. doi: 10.55643/fcaptp.1.42.2022.3676