Quantitative control of technological haracteristics of activated sludge in environmental biotechnologies

 

Valentyna Iurchenko

M. Beketov National University of Urban Economy in Kharkiv

http://orcid.org/0000-0001-7123-710X

 

Svetlana Tkachenko

M. Beketov National University of Urban Economy in Kharkiv

http://orcid.org/0000-0001-9542-5869

 

Yulia Levashova

M. Beketov National University of Urban Economy in Kharkiv

http://orcid.org/0000-0001-6323-2114

 

Natalia Kosenko

M. Beketov National University of Urban Economy in Kharkiv

http://orcid.org/0000-0002-4554-0305

 

Oksana Melnikova

M. Beketov National University of Urban Economy in Kharkiv

http://orcid.org/0000-0001-5649-2997

 

Ganna Chernyshenko

M. Beketov National University of Urban Economy in Kharkiv

http://orcid.org/0000-0002-0685-925X

 

DOI: https://doi.org/10.52363/2524-0226-2023-37-24

 

Keywords: activated sludge, flakes, technological characteristics, shape, dimensions, structure, sedimentation properties, adhesion

 

Аnnotation

 

For the quantitative control of the technological characteristics of activated sludge in biological treatment plants, a computerized method was developed as part of the presented research, the use of which increases the reliability and man-made safety of the operation of biological treatment plants. The methodology is based on the quantitative determination of geometric (area, volume) and morphological (shape and structure) characteristics of activated sludge flakes during the processing of microphotographs of sludge in the Image J software product. Photographing of microscopic images of sludge was performed at a magnification of 100 times and zoomed using micrometer eyepiece. Currently, the morphological characteristics of activated sludge are determined only visually, which does not allow averaging the data of a large number of samples and generally determines the subjective nature of the assessments. Studies of sludge flakes in adhesions on membranes of a membrane biological reactor showed that flakes from the surface aerobic zone of adhesions have a somewhat rounder shape, smaller linear dimensions, area and volume than sludge flakes from the anaerobic zone in the depth of adhe-sions. Studies of the effect of magnesium ions on the properties of activated sludge flakes showed that with an increase in the concentration of magnesium in the sludge liquid, there is a decrease in the roundness of the flakes, a slight deterioration of the structure, but there is a much more significant increase in linear dimensions (by almost 60 %), area (by 134 %) and extraordinary increase (by 275 %) in the volume of flakes. These indicators indicate an improvement in the technological properties of the flakes and a reduction in their ability to stick to the reactor membranes. The developed computerized technique makes it possible to significantly detail and clarify the results of visual evaluations of the technological characteristics of activated sludge flakes and to detect the smallest changes in the morphological indicators of flakes in various wastewater treatment technologies in a large array of data.

 

References

 

  1. Sustainable Cities And Towns Campaign Available at: https://sustainableeu/sustainable-cities-platform/
  2. Burkinsky, B. V, Stepanov, V. N. Kharichkov, S. K. (2005). Economic and ecological foundations of regional nature management and development. Odesa: Phoenix, 575. Available at: https://nvd-nanu.org.ua/d578f989-9d9f-e859-760b-dd2853739841/
  3. Zgurovsky, M. Z. (2009). Sustainable development of the regions of Ukraine. Kiev: NTUU «KPI», 197. Available at: http://irbis-nbuv.gov.ua/ulib/item/ukr0000013879
  4. Henze, M., Harremoës, P., Jansen, J. l. C., Arvin E. (2002). Wastewater Treatment: Biological and Chemical Processes. Berlin; New York: Springer, 430. Available at: https://
    dtu.dk/en/publications/wastewater-treatment-biological-and-chemical-processes-2
  5. Zhmur, N. S. (2003). Technological and biochemical processes of wastewater treatment at facilities with aerotanks. Moscow: AQUAROS, 512. Available at: https://elima.ru/books/?id=5483
  6. Blinova, N. K., Kravchenko, A. (2018). Modern problems of biological wastewater treatment and ways to solve them. Visnik of the Volodymyr Dahl east Ukrainian national university, 3(244), 14. Available at: https://deps.snu.edu.ua/media/filer_public/35/56/3556d222-10ff-4466-939f-18fc2496c428/visnik_3_244_.pdf
  7. Eikelboom, D. (2000). Process Control of Activated Sludge Plants by Microscopic Investigation. London: IWA Publishing, 163. Available at: https://www.
    com/sites/default/files/ebooks/9781900222297.pdf
  8. Mark, C. M. van Loosdrecht, Per H. Nielsen, Carlos, M. Lopez-Vazquez and Damir Brdjanovic. (2005). Experimental Methods In Wastewater Treatment. Published by IWA Publishing, London, UK, 362. Available at: https://experimentalmethods.org/wp-content/uploads/2018/01/Experimental-Methods-in-Wastewater-Treatment.pdf
  9. Jenneé, R., Banadda, E., Smets, I., Van Impe, J. (2007). Monitoring activated sludge settling properties using image analysis. Water Science Technology, 50(7), 281. doi: 10.2166/wst.2004.0471
  10. Xu, D., Li, J., Ma, T. (2021). Rapid aerobic sludge granulation in an integrated oxidation ditch with two-zone clarifiers. Water Research, 175. doi: 10.1016/j.watres.2020.115704
  11. D’Antoni, B.M., Iracà, F., Romero, M. (2017). Filamentous foaming and bulking in activated sludge treatments: causes and mitigation actions. Brief review. doi: 10.13140/RG.2.2.29506.58560
  12. Sam, T., Le Roes-Hill, M., Hoosain, N., Welz, P. (2022). Strategies for controlling filamentous bulking in activated sludge wastewater treatment plants: the old and the new J. Water, 14(20), 3223. doi: 10.3390/w14203223
  13. Ai, S., Du, L., Wang, Z., Shao, L., Kang, H., Wang, F. and Bian, D. (2021). Effect of controlling filamentous bulking sludge by Sequencing Batch Reactor Activated Sludge Process, E3S Web of Conferences, 261, 04031. doi: 10.1051/e3sconf/202126104031
  14. Shchetinin, A. I., Yurchenko, V. A., Malbiev, B. Y., Mikhnev, A. N., Melnik, A., Korobkina, I. A. (2006). Filamentous activated sludge bulking and the effect of nutrient removal J. Chemistry and technology of water, 259(4), 83. Available at: http://jwct.org.ua/uk/home-uk.html
  15. Gulshin, I. (2017). The settling behavior of an activated sludge with simultaneous nitrification and denitrification. Matec Web of Conferences, 106. doi: 10.1051/matecconf/201710607002
  16. Mesquita, D. P., Amaral, A. L., Ferreira, E. C. (2013). Activated sludge characterization through microscopy: a review on quantitative image analysis and chemometric techniques. Analytica Chimica Acta, 802, 14. doi: 10.1016/j.aca.2013.09.016
  17. Mikkelsen, L. H., Keiding, K. (2002). The shear sensitivity of activated sludge: an evaluation of the possibility for a standardised floc strength test. Water Research, 36, 2931. doi: 10.1016/S0043-1354(01)00518-8
  18. Van Dierdonck, J., den Broeck, R., Vansant, A., Van Impe, J., Smets, I. (2013). Microscopic image analysis versus sludge volume index to monitor activated sludge bioflocculation: a case study. Separation Science and Technology, 48, 1433. doi: 10.1080/01496395.2013.767836
  19. Winkler, M. K., Kleerebezem, R., Strous, M., Chandran, K., van Loos-drecht, (2013). Factors influencing the density of aerobic granular sludge. Applied Microbiology and Biotechnology, 97.7459-7468. doi: 10.1007/s00253-012-4459-4
  20. Jan Hoinkisa, Shamim A. Deowan, Volker Panten, Alberto Figoli, Rong Rong Huang (2012). Enrico Drioli, Membrane Bioreactor (MBR) Technology – a Promising Approach for Industrial Water Reuse. Procedia Engineering, 33, 234. doi: 10.1016/j.proeng.2012.01.1199
  21. Aslam, M., Charfi, A., Lesage, G., Heran, M., Kim, J. (2017). Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling. Chemical Engineering Journal, 307, 897–913. doi: 10.1016/j.cej.2016.08.144
  22. Arabi S., Nakhla G. (2009). Impact of cation concentrations on fouling in membrane bioreactors Journal of Membrane Science, 343, 110–118. doi: 10.1016/j.memsci.2009.07.016