Обґрунтування нормативів для оцінювання оперативних розгортань в засобах бронезахисту

 

Белюченко Дмитро Юрійович

Національний університет цивільного захисту України

http://orcid.org/0000-0001-7782-2019

 

Стрілець Віктор Маркович

Національний університет цивільного захисту України

http://orcid.org/0000-0001-5992-1195

 

Луценко Тетяна Олексіївна

Національний університет цивільного захисту України

http://orcid.org/0000-0001-7373-4548

 

Корчагін Павло Олександрович

ГУ ДСНС України у Луганській області

http://orcid.org/0009-0004-4126-1781

 

Маловик Ігор Вікторович

Департамент запобігання надзвичайним

ситуаціям апарату ДСНС

http://orcid.org/0009-0009-2319-9730

 

Ребров Олександр Володимирович

ГУ ДСНС України у Рівненській області

http://orcid.org/0009-0005-6654-7863

 

DOI: https://doi.org/10.52363/2524-0226-2024-39-2

 

Ключові слова: норматив, оперативне розгортання, пожежно-рятувальний автомобіль, бронезахист

 

Анотація

 

Розроблено науково-методичний апарат обґрунтування нормативів для оцінювання рівня підготовленості пожежних-рятувальників до оперативного розгортання пожежно-рятувальних автомобілів в захисному спорядженні із засобами бронезахисту та визначено нормативні оцінки для типових варіантів. Для цього було вдосконалено існуючий статистичний метод обґрунтування нормативів шляхом визначення середньозважених оцінок ймовірностей попадання часу оперативного розгортання в засобах бронезахисту в інтервали між нормативами. Це дозволило враховувати різноманіття суджень експертів стосовно цього, яке раніше не брали до уваги. Встановлено, що для обґрунтування шуканих нормативних оцінок необхідно визначити зворотну функцію стандартного нормального розподілу з урахуванням як його параметрів (математичного очікування та середньоквадратичного відхилення часу здійснення відповідного оперативного розгортання), так і оцінок ймовірності отримання відповідних оцінок у вигляді середньозважених оцінок відповідних часток (частот) всіх можливих результатів, які попадають в інтервали між (до, після) шуканими нормативними оцінками. У відповідності до розробленого методу обґрунтовано нормативи для оцінювання рівня підготовленості пожежних-рятувальників до подачі двох пожежних стволів з прокладанням магістральної лінії d=77 мм на три рукава та двох робочих ліній d=51 мм на два рукави з установкою пожежно-рятувального автомобіля на пожежний гідрант, а також  для оцінювання рівня підготовленості до подачі переносного лафетного ствола з прокладанням двох магістральних ліній на три рукава d=77 мм з установкою пожежно-рятувального автомобіля на пожежний гідрант. Їх впровадження буде сприяти усуненню протиріччя між умовами застосування пожежно-рятувальних автомобілів, для яких були розроблені існуючі нормативи, та сучасними умовами, коли є необхідність працювати в умовах можливого бойового ураження.

 

Посилання

 

  1. Наказ МВС України від 12.06.2023 № 480 «Про затвердження змін до Порядку організації службової підготовки осіб рядового і начальницького складу служби цивільного захисту».
  2. Державна служба України з надзвичайних ситуацій. URL: https://dsns.gov.ua/
  3. ДСТУ 8782:2018 Засоби індивідуального захисту. Бронежилети. Класифікація. Загальні технічні умови. URL: https://zakon.rada.gov.ua/rada/show/v0216774-18#Text
  4. Hazardous waste operations and emergency response. Occupational Safety and Health Standards 1910. 120. URL: https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9765
  5. NFPA 1500 Standard on Fire Department Occupational Safety and Health Program. 2002 Edition. URL: http://www.fsans.ns.ca/pdf/research/nfpa1500.pdf
  6. Tochihara Y., Lee J. Y., Son S. Y. A review of test methods for evaluating mobility of firefighters wearing personal protective equipment. Ind Health. 2022. 60(2). Р. 106–120. doi: 10.2486/indhealth.2021-0157
  7. OSHA 1910.156 Fire brigades. URL: https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9810
  8. NFPA 1033: Standard for Professional Qualifications for Fire Investigator. URL: http://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards?mode=code&code=1033
  9. Texas City Refinery explosion. URL: https://en.wikipedia.org/wiki/Texas_City_Refinery_explosion
  10. Multi-part Document BS EN 1846 - Firefighting and rescue service vehicles. URL: https://doi.org/10.3403/BSEN1846
  11. Morris C., Chander H. The Impact of Firefighter Physical Fitness on Job Performance. A Review of the Factors That Influence Fire Suppression Safety and Success. Safety. 2018. 4(60). Р. 4–11. doi: 10.3390/safety4040060
  12. Skinner T., Kelly V., Boytar A., Peeters G., Rynne S. Aviation Rescue Firefighters physical fitness and predictors of task performance. J Sci Med Sport. 2020. 23(12). Р. 1228–1233. doi: 10.1016/j.jsams.2020.05.013
  13. Белюченко Д. Ю., Стрілець В. М. Багатофакторна оцінка ефективності оперативного розгортання пожежних автомобілів в умовах виникнення надзвичайних ситуацій техногенного характеру. Комунальне господарство міст. 2018. № 156. С. 204–211. doi: 10.33042/2522-1809-2020-3-156-204-211
  14. Stevenson R., Siddall A., Turner P., Bilzon J. Implementation of Physical Employment Standards for Physically Demanding Occupations. Journal of Occupational and Environmental Medicine. 2020. 62(8). Р. 647–653. doi: 10.1097/JOM.0000000000001921
  15. Gumieniak R., Shaw J., Gledhill N., Jamnik V. Physical employment standard for Canadian wildland fire fighters; identifying and characterising critical initial attack response tasks. Ergonomics. (2018). 61/10. Р. 1299–1310. doi: 10.1080/00140139.2018.1464211
  16. Strelec V. M., Stecuk E. I., Shepelev I. V. A statistical method of substantiating standards for evaluating the level of preparedness of pyrotechnicians (on the example of wearing personal protective equipment of a sapper), Military and technical collection. doi: 33577/2312-4458.19.2018.85-93 
  17. Стрелец В. М. Оценка эффективности подготовки спасателей к ликвидации чрезвычайных ситуаций с использованием нормативов. Проблеми надзвичайних ситуацій. 2014. Вип. № 20. С. 124–131. URL: https://nuczu.edu.ua/sciencearchive/ProblemsOfEmergencies/vol19/19.pdf
  18. Вентцель Е. С. Теория вероятностей. Наука, 1962. 564 с.
  19. Соловйов І. І., Стрілець В. М., Льовін Д. А. Багатофакторна модель підйому водолазом-сапером вибухонебезпечного предмету. Проблеми надзвичайних ситуацій. 2021. Вип. № 2(34). С. 272–294. URL: http://pes.nuczu.edu.ua/images/arhiv/34/20.pdf
  20. Статистичне опрацювання даних. Категорії відхилення від нормального розподілу. ДСТУ ISO 5479:2009 (ISO 5479:1997, IDT), 34 с.

 

Nonlinearities correlation of n-alkanes and n-alcohols physicochemical properties

 

Tregubov Dmytro

National University of Civil Defence of Ukraine

https://orcid.org/0000-0003-1821-822X

 

Trefilova Larisa

National University of Civil Defence of Ukraine

http://orcid.org/0000-0001-9061-4206

 

Minska Natalya

National University of Civil Defence of Ukraine

http://orcid.org/0000-0001-8438-0618

 

Hapon Yuliana

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-3304-5657

 

Sokolov Dmitry

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-7772-6577

 

DOI: https://doi.org/10.52363/2524-0226-2024-39-1

 

Keywords: n-alcohols, n-alkanes, physicochemical properties, cluster, model, nonlinearity, calculation convergence

 

Аnnotation

 

Correspondences between the changes nonlinearity in substance physico-chemical parameters and the influence mechanisms on them by the substance supramolecular structure in the calculated dependencies form for n-alkanes and n-alcohols was established. Similarity, change features and correlation between such parameters as melting point, boiling point, flash point, self-ignition, density, solubility in water, viscosity, vaporization heat, surface tension were investigated. The paper obtained 14 calculated dependencies that calculate these parameters on the established similarity basis between them and the lengths of the molecule or cluster with sufficient correlation coefficients. For viscosity, vaporization heat and surface tension, change general dependences are established, but without taking into account oscillatory deviations. Calculated dependences between substance characteristic temperatures were obtained: melting temperatures of alkanes and alcohols, boiling and flash temperatures in homologous series, autoignition and melting temperatures (flash, boiling). This correlation is explained by the fact that supramolecular structures are formed according to a similar principle in matter different states and during the combustion initiation. Such structures modeling for the solid, liquid state, and solubility in water was carried out, taking into account different coordination numbers, globulation, and changes in the clustering place according to the molecule length. On the such modeling basis and the "melting ease" indicator, dependencies have been developed for calculation with the dependencies nonlinearities reflection of alkanes and alcohols density and melting temperature. For the boiling and flash point, vaporization heat of alcohols, the deviation from linearity is taken into account by the cluster length reduction parameter. It is shown that the considered dependencies modulation by the cluster length allows to describe their anomalies and increases the calculation convergence.

 

References

 

  1. Tregubov, D., Trefilova, L., Slepuzhnikov, E., Sokolov, D., Trehubova, F. (2023). Correlation of properties in hydrocarbons homologous series. Problems of Emergency Situations, 2(38), 96–118. doi: 10.52363/2524-0226-2023-38-7
  2. Tregubov, D., Tarakhno, O., Deineka, V., Trehubova, F. (2022). Oscillation and Stepwise of Hydrocarbon Melting Temperatures as a Marker of their Cluster Structure. Solid State Phenomena, 334, 124–130. doi: 10.4028/p-3751s3
  3. Jovanović, J., Grozdanić, D. (2010). Reliable prediction of heat of vaporization of n-alkanes at 298.15 K. Journal of the Serbian Chemical Society. J. Serb. Chem. Soc., 75(7), 997–1003. doi: 10.2298/JSC091123067J
  4. Santos, R., Leal, J. (2012). A Review on Prediction Methods for Molar Enthalpies of Vaporization of Hydrocarbons: The ELBA Method as the Best Answer. J. of Physical and Chemical Reference Data, 41, 043101. doi: 10.1063/1.4754596
  5. Wan,, Song, J., Yang, Y., Gao, L., Fanga, W. (2021). Development of coarse-grained force field for alcohols: an efficient meta-multilinear interpolation parameterization algorithm. Physical Chemistry Chemical Physics, 23, 1956–1966. doi: 10.1039/d0cp05503d
  6. Yaxin, A., Karteek, K. B., Sanket, A. D. (2018). Development of New Transferable Coarse-Grained Models of Hydrocarbons. J. Phys. Chem., 122, 28, 7143–7153. doi: 10.1021/acs.jpcb.8b03822
  7. Dai, L., Chakraborty, S., Wu, G., Ye, J, La, Y., Ramanarayan, H. (2022). Molecular simulation of linear octacosane via a CG10 coarse grain scheme. Physical Chemistry Chemical Physics, 24(9), 5351–5359. doi: 1039/D1CP05143A
  8. Song, J., Wan, M., Yang, Y., Gao, L., Fang, W. (2021). Development of accurate coarse-grained force fields for weakly polar groups by an indirect parameterization strategy. Physical Chemistry Chemical Physics, 23(11), 6763–6774. doi: 10.1039/D1CP00032B
  9. Conway, O., An, Y., Bejagam, K. K., Deshmukh, S. A. (2020). Development of transferable coarse-grained models of amino acids. Mol. Syst. Des. Eng., 5, 675. doi: 10.1039/C9ME00173E
  10. Pervaje, A. K., Walker, Ch. C., Santiso, E. E. (2019). Molecular simulation of polymers with a SAFT-γ Mie approach. Molecular Simulation, 45(14–15), 1223–1241. doi: 10.1080/08927022.2019.1645331
  11. Laguna, (2008). Modern Supramolecular Gold Chemistry: Gold-Metal Interactions and Applications. Weinheim: Wiley-VCH. doi: 10.1002/9783527623778
  12. Kahwaji, S., White, M. (2021). Organic Phase Change Materials for Thermal Energy Storage: Influence of Molecular Structure on Properties. Molecules, 26, 6635. doi: 10.3390/molecules26216635
  13. Doroshenko, I. Yu. (2017). Spectroscopic study of cluster structure of n-hexanol trapped in an argon matrix. Low Temperature Physics, 3(6), 919–926. doi: 1063/1.4985983
  14. Millet, D. B. et al. (2015). Sources and sinks of atmospheric formic acid. Atmos. Chem. Phys, 15, 6283–6304. doi: 10.5194/acp-15-6283-2015
  15. Tregubov, D., Sharshanov, A., Sokolov, D., Tregubova, F. (2022). Forecasting the smallest super molecular formations for alkanes of normal and isomeric structure. Problems of Emergency Situations, 35, 63–75. doi: 10.52363/2524-0226-2022-35-5
  16. Tregubov, D., Tarahno, O., Kireev, О. (2018). Influence of cluster structure of liquids technical mixtures on the value of characteristic temperatures. Problems of Emergency Situations, 2(28), 99–110. doi: 10.5281/zenodo.2598054
  17. Boot, M., Tian, M., Hensen, E., Mani, S. (2017). Impact of fuel molecular structure on autoignition behavior: design rules for future high performance gasolines. Progress in Energy and Combustion Science, 60, 1–25. doi: 10.1016/j.pecs.2016.12.001
  18. Tarakhno, O. V., Trehubov, D. H., Zhernoklʹov, K. V., Kovrehin, V. V. (2020). Osnovni polozhennya protsesu horinnya. Kharkiv: NUTSZ Ukrayiny, Retrieved from: http://repositsc.nuczu.edu.ua/handle/123456789/11382
  19. Tregubov,, Slepuzhnikov, E., Chyrkina, M., Maiboroda, A. (2023). Cluster Mechanism of the Explosive Processes Initiation in the Matter. Key Engineering Materials, 952, 131–142. doi: 10.4028/p-u0fBZB
  20. Search for Species Data by Chemical Name. NIST Chemistry WebBook. U. Department of Commerce. doi: https://doi.org/10.18434/T4D303
  21. Quickly find chemical information from authoritative sources. Pubchem. U. National Library of Medicine. Retrieved from: https://pubchem.ncbi.nlm.nih.gov/
  22. Reichel, M., Krumm, B., Vishnevskiy, Yu., Blomeyer, S., Schwabedissen, J., Stammler, H.-G., Karaghiosoff, K. (2019). Solid-State and Gas-Phase Structures and Energetic Properties of Dangerous Methyl and Fluoromethyl Nitrates. Angewandte Chemie International Edition, 58(51), 18557–18561. doi: 10.1002/anie.201911300

 

Study of extinguishing a model fire of class "B" with bulk materials

 

Makarenko Viktoriya

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0001-5629-1159

 

Kireev Oleksandr

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0002-8819-3999

 

Chyrkina-Kharlamova Maryna

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0002-2060-9142

 

Minska Natalya

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0001-8438-0618

 

Sharshanov Andrew

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0002-9115-3453

 

DOI: https://doi.org/10.52363/2524-0226-2023-38-19

 

Keywords: flammable liquids, gasoline, fire-extinguishing properties, expanded perlite, crushed foam glass, composition optimization

 

Аnnotation

 

The costs of components of the fire extinguishing system based on light loose materials for extinguishing a medium-sized class "B" model fire were experimentally determined. According to the results of preliminary studies on extinguishing a model fire of class "B" of small sizes, as components of such a system, granular foam glass with a granule size of 10–15 mm, expanded perlite with a granule size of 1,2±0,2 mm or vermiculite with a plate size of 1×2 mm and sprayed water. Styrofoam in such a system ensures its buoyancy and cooling of the surface layer of the burning liquid. The fine powder of expanded perlite improves the insulating properties of the fire extinguishing system. The water supplied to the upper layer of loose materials, in addition to increasing the insulating and cooling properties of the system, ensured the long-term absence of re-ignition. To increase the economic parameters of the fire extinguishing system, its composition was optimized according to the effect-cost parameter. It was established that the lowest economic costs for extinguishing gasoline are provided by the sequential supply of three components: crushed foam glass, dispersed expanded perlite and sprayed water with such specific surface costs – 6,7 kg/m2, 1,6 kg/m2 and 2,0 kg/m2 in accordance. For the optimized composition, a study was carried out on extinguishing a standard model fire 2"B", the results of which are close to the results obtained on model fires of small and medium sizes. It is shown that the proposed fire extinguishing system based on light loose materials has advantages in terms of economic and environmental parameters compared to existing and previously proposed means of extinguishing flammable liquids. Means of feeding light loose materials are proposed. The areas of work in the implementation of a fire extinguishing system based on light loose materials in the practice of fire extinguishing have been noted.

 

References

 

  1. Campbell, R. (2014). Fires at Outside Storage Tanks.National fire protection association. Available at: https://nfpa.org/-/media/Files/News-and-Research/Fire-statistics-and-reports/Building-and-life-safety/osflammableorCombustibleLiquidtankStorageFacilities.ashx
  2. Hylton, J. G., Stein, G. P. (2017). U.S. Fire Department Profile. National Fire Protection Association Association. Available at: https://www.nfpa.org/-/media/Files/News-and-Research/Fire-statistics/Fire-service/osfdprofile.pdf
  3. Lang, X.-q., Liu, Q.-z., Gong, H. (2011). Study of Fire Fighting System to Extinguish Full Surface Fire ofLarge Scale Floating Roof Tanks. Procedia Engineering, 11, 189–195. Available at: https://www.sciencedirect.com/science/article/pii/S1877705811008344
  4. Code, P. (2018). Fire extinguishing media. Foam concentrates – Part 1: Specification for medium expansion foam concentrates for urface application to water-immiscible liquids. European committee for standardization.
  5. Code, P. (2018). Fire extinguishing media. Foam concentrates – Part 2: Specification for high expansion foam concentrates for urface application to water-immiscible liquids. European committee for standardization.
  6. Code, P. (2018). Fire extinguishing media. Foam concentrates – Part 3: Specification for low expansion foam concentrates for urface application to water-immiscible liquids. European committee for standardization.
  7. Olkowska, E., Polkowska, Z., Namieśnik, J. (2011). Analytics of sur factantsin the environment: problems and challenges . Chem. Rev, 111(9), 5667–5700. doi: 1021/cr100107g
  8. Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37(1), 63–77. Available at: http://29yjmo6.257.cz/bitstream/123456789/9380/1/Poll%20Res-10_proof.pdf
  9. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6(10 (90)), 11–16.  doi: 15587/1729-4061.2017.114504
  10. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9(1), 9–20.  doi: 1260/1750-9548.9.1.9
  11. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., &Trigub, V. (2018). Improving the installation for fire extinguishing with finely dispersed water. Eastern-European Journal of Enterprise Technologies, 2(10 (92)), 38–43.  doi: 15587/1729-4061.2018.127865
  12. Vambol, S., Bogdanov, I., Vambol, V., Suchikova, Y., Kondratenko, O., Hurenko, O., Onishchenko, S. (2017). Research into regularities of pore formation on the surface of semiconductors. Eastern-European Journal of Enterprise Technologies, 3(5(87)), 37–44.  doi: 15587/1729-4061.2017.104039
  13. Chernukha, A., Teslenko, A., Kovalov, P., Bezuglov, O. (2020). Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition. Materials Science Forum, 1006, 70–75.  doi: 4028/www.scientific.net/msf.1006.70
  14. Vasilchenko, A., Otrosh, Y., Adamenko, N., Doronin, E., Kovalov, A. (2018). Feature of fire resistance calculation of steel structures with intumescent coating. MATEC Web of Conferences, 230, 02036. doi: 1051/matecconf/201823002036
  15. Kustov, M., Kalugin, V., Tutunik, V., Tarakhno, O. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, (1), 92–99.  doi: 32434/0321-4095-2019-122-1-92-99
  16. Pietukhov, R., Kireev, A., Tregubov, D., Hovalenkov, S. (2021). Experimental Study of the Insulating Properties of a Lightweight Material Based on Fast-Hardening Highly Resistant Foams in Relation to Vapors of Toxic Organic Fluids. Materials Science Forum, 1038, 374–382. doi: 4028/www.scientific.net/msf.1038.374
  17. Musayev, M. Ye., Dadashov, I. F. (2021). Razrabotka yedinogo sredstva dlya predotvrashcheniya ispareniya toksichnykh zhidkostey i tusheniya pozharov klassa «B». Academy of the Ministry of Emergency Situations of the Azerbaijan Republic. Academy of the Ministry of Emergency Situations of the Azerbaijan Republic. (3–4), 117–124. Available at: https://engineeringmechanics.az/uploads/2023/05/8-fhn-akademiya-musayev-meqale-03-11-2021.pdf
  18. Dadashov, I. F., Kiryeyev, O. O., Trehubov, D. H., Tarakhno, O. V. (2021). Hasinnya horyuchykh ridyn tverdymy porystymy materialamy ta heleutvoryuyuchymy systemamy. Kharkiv. NUCPU.
  19. Makarenko, V. S., Kiryeyev, O. O., Tregubov, D. G., Chyrkina, M. A. (2021). Doslidzhennya vohnehasnykh vlastyvostey binarnykh shariv lehkykh porystykh materialiv. Problemy nadzvychaynykh sytuatsiy, 1(33), 235–245. doi: 52363/2524-0226-2021-33-18
  20. Makarenko, V., Kireev, O., Slepuzhnikov, E., Chyrkina, M. (2022). Doslidzhennya vplyvu poroshkivna vohnehasni kharakterystyky binarnykh sharivporystykh materialiv. Problems of Emergency Situations, 1(35), 297–310.  doi: 52363/2524-0226-2022-35-22
  21. Dadashov, І., Kireev, А., Kirichenko, I., Kovalev, A., Sharshanov, A. (2018). Simulation of the properties two-laermaterial. Functional Materials, (25, 4), 774–779. doi: 15407/fm25.04.1
  22. Babashov, I. B., Dadashov, I. F., Kireev, O., Savchenko, А., Musayev, M. E. (2023). Rezulʹtaty vyznachennya vohnehasnykh kharakterystyk lehkykh sypkykh materialiv pry hasinni etanolu. Problems of Emergency Situations, (37), 250–263.  doi: 10.52363/2524-0226-2023-37-18

 

Оptimization of the parameers of the placement of elements of the acoustic system for orientation of rescuer's equipment

 

Levterow Alexander

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0001-5926-7146

 

Statyvka Yevhenii

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0003-1536-2031

 

DOI: https://doi.org/10.52363/2524-0226-2023-38-20

 

Keywords: acoustic device, sensor, acoustic resistance, reflection coefficient, visual control

 

Аnnotation

 

Experimentally determined correction values of the distance to the obstacle depending on the acoustic impedance of the environment for the acoustic device of the rescuer's equipment. The measurement results were obtained using the developed experimental setup, which took into account, in real time, changes in acoustic impedance and temperature of the environment using a two-channel temperature meter and an optical penetration sensor of the environment. The temperature of the environment (in the confined space) varied from 20 °C to 60 °C, and the optical penetration index from 0 to 100 %, where 100 % corresponds to complete optical opacity of the environment. Dependencies of the propagation of acoustic waves upon changing the optical permeability of the medium and temperature were obtained. The correction value for the distance to the obstacle calculated by the acoustic device at a distance of 1000 mm was (+0,013 m). The relative error during the measurements did not exceed 2 %. It was found that when the wave impedance increases, the indicators of the distance to the obstacle decrease, so the corrective dependence has a positive value. The obtained results make it possible to increase the reliability of the readings of the acoustic device as an additional equipment of the rescuer. The data obtained as a result of the experiment make it possible to display the shape of the obstacle in more detail. Approximating polynomials of the reflection coefficient of acoustic waves depending on the volume content of inclusions at angles of incidence from 0 °С to 30 °С have been determined. The use of the obtained polynomials allows to increase the speed of the program code of the control microcontroller of the acoustic device. The obtained dependencies are taken into account in the calculation algorithm of the program code of the microcontroller of the acoustic device for determining the shape and distance to the obstacle, which makes it possible to increase the efficiency of the rescuer's orientation in conditions of unsatisfactory visual control during emergency rescue operations.

 

References

  1. Kostenko, T. V. (2017). Osoblyvosti travmatyzmu riatuvalnykiv v Ukraini. Vi-sti Donetskoho hirnychoho instytutu, 1(40), 165–169. ISSN 1999-981X
  2. Lievtierov, O. A., Statyvka, Y. S. (2022). Vyznachennia parametriv akustych-noho pryladu ekipiruvannia riatuvalnykiv. Problems of Emergency Situations, 2(36), 280–295. doi: 10.52363/2524-0226-2022-36-21
  3. Hiremath, N., Kumar, V., Motahari, N., Shukla, D. (2021). An Overview of Acoustic Impedance Measurement Techniques and Future Prospects.Metrology, 1, 17–38. doi: 10.3390/metrology1010002
  4. Kirtskhalia, V. (2021). The dependence of the speed of sound in the Earth’s atmosphere on its density and the correction of Mach’s number. Ilia Vekua Sukhumi Institute of Physics and Technology. Conf. Series: Materials Science and Engineering, 1–7. doi: 10.1088/1757-899X/1024/1/012037
  5. Teregulova, E. A. (2021). Features of the Passage of Acoustic Waves at Right Angle through a System of Layers of Multifractional Gas Suspensions.Lobachevskii Journal of Mathematics, 42(9), 2222–2225 doi: 10.1134/S1995080221090262
  6. Choon, M. P., Sang, H. (2013). Propagation of acoustic waves in a metamaterial with a refractive index of near zero. Applied Physics Letters, 46–57. doi: 10.1063/1.4811742
  7. Pozdieiev, S., Nuianzin, O., Sidnei, S., Shchipets, S. (2017). Computational study of bearing walls fire resistance tests efficiency using different combustion furnaces configurations. MATEC Web of Conferences, 116. doi: 10.1051/matecconf/201711602027
  8. DSTU EN 469:2017. Zakhysnyi odiah dlia pozhezhnykiv. Vymohy shchodo pokaznykiv yakosti zakhysnoho odiahu dlia pozhezhnykiv. Available at: http://online.budstandart. com/ua/catalog/doc-page?id_doc=82840
  9. Wilk-Jakubowski, J. (2021). Analysis of Flame Suppression Capabilities Using Low-Frequency Acoustic Waves and Frequency Sweeping Techniques.Department of Information Systems. Kielce University of Technology, 5–8. doi: 10.3390/sym13071299
  10. Gubaidullin, D. A., Teregulova, E. A. (2019). Propagation acoustic signal in the multifractional gas suspension. Journal Physics. Journal of Physics: Conf. Series, 1–5. doi: 10.1088/1742-6596/1328/1/012079
  11. Kenney, L. W., Degroot, D. W., Lacy, A. H. (2004). Extremes of human heat tolerance: life at the precipice of thermoregulatory failure. Journal of Thermal Biology, 479–485. doi: 10.1016/j.jtherbio.2004.08.017

 

Increasing the effectiveness of extinguishing fires in the undercarriage of the subway with gel-forming compounds

 

Ostapov Kostiantyn

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0002-1275-741X

 

Senchykhyn Iurii

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-5983-2747

 

Avetisian Vadim

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0002-5986-2794

 

Haponenko Yuri

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0003-0854-5710

 

Kirichenko Igor

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0001-7375-8275

 

DOI: https://doi.org/10.52363/2524-0226-2023-38-18

 

Keywords: flammable substance, gel-forming composition, subway car, undercarriage extinguishing trolley

 

Аnnotation

 

The effectiveness of extinguishing fires in the undercarriage space of cars at subway stations has been increased due to the use of a special trolley for supplying gel-forming compounds to hard-to-reach places under subway cars. In order to ensure the delivery of the gelling system to hard-to-reach places under the subway cars, it is proposed to use a special cart that moves inside the main track of the subway in the deepened tray of the water collector, thanks to a cable winch on the «pull-push» principle with an autonomous electric reversing drive. To confirm the effectiveness of extinguishing, on a special stand that allowed changing the position of the model hearth in space, to the position of the conventional ceiling-floor, comparative experiments were conducted for three types of the most common fire extinguishing agents, with the determination of the average values of the time and consumption of fire extinguishing agents for fire extinguishing, with at different angles of inclination of their submission. It is recognized that the use of gel-forming compounds when extinguishing equipment elements in the undercarriage space helps to reduce extinguishing costs and allows to extinguish the fire under the car 2,5 times faster. It was established that the change in the angle of inclination of the burning surface significantly affects the effectiveness of extinguishing with water and fire-extinguishing powder. The obtained data confirm the expediency of creating special carts for undercarriage extinguishing using fire-extinguishing gelling compounds. The obtained results are useful and im-portant, as they confirm the increase in the effectiveness of extinguishing the weighted space with gel-forming compositions, reflect a reduction in times of time and consumption of fire extinguishing agent when using gel-forming compositions. The use of a special weighted extinguishing cart with gel-forming compositions allows automated remote extinguishing in hard-to-reach places of the weighted space, which significantly increases the safety of rescuers when extinguishing such fires.

 

References

 

  1. Long, Z., Zhong, M., Chen, J., Cheng, H. (2023). Study on emergency ventilation strategies for various fire scenarios in a double-island subway station. Journal of Wind Engineering and Industrial Aerodynamics, 235, 105364. doi: 10.1016/j.jweia.2023.105364
  2. Wang, K., Cai, W., Zhang, Y., Hao, H., Wang, Z. (2021). Numerical simulation of fire smoke control methods in subway stations and collaborative control system for emergency rescue. Process Safety and Environmental Protection, 147, 146–161. doi: 10.1016/j.psep.2020.09.033
  3. Wei, Z., Xi, Z., Zhuo-fu, W. (2016). Experiment study of performances of fire detection and fire extinguishing systems in a subway train. Procedia Engineering, 135, 393–402. doi:1016/j.proeng.2016.01.147
  4. Saveliev, D., Khrystych, O., Kirieiev, O. (2018). Binary fire-extinguishing systems with separate application as the most relevant systems of forest fire suppression. European journal of technical and natural science, 1, 31–36. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/7121
  5. Ostapov, K., Senchihin, Yu., Syrovoy, V. (2017). Development of the installation for the binary feed of gelling formulations to extinguishing facilities. Science and education a new dimension. Natural and technical sciences, 132, 75–77. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/3891
  6. Ng, Y., Chow, W., Cheng, C., Chow, C. (2019). Scale modeling study on flame colour in a ventilation-limited train car pool fire. Tunnelling and underground space technology, 85, 375–391. doi: 1016/j.tust.2018.12.026
  7. Dale, L. (2018). Ambulatory surgery center safety guidebook. Managing code requirements for fire and life safety, 15, 23–26. doi: 1016/B978-0-12-849889-7.00005-4
  8. Gravit, M. Vaititckii, A. Shpakova, A. (2016). Subway constructions fire safety regulatory. Requirements procedia engineering, 165, 1667–1672. doi: 1016/j.proeng.2016.11.908
  9. Zhanga, L., Wua, X., Liub, M., Liuc, W., Ashuri, B. (2019). Discovering worst fire scenarios in subway stations: A simulation approach. Automation in construction, 99, 183–196. doi: 1016/j.autcon.2018.12.007
  10. De-xu, D., Xu–hai, P., Min, H. (2018). Experimental study on fire extinguishing properties of compound superfine powder. Procedia engineering, 142–148. doi: 1016/j.proeng.2017.12.126
  11. Ostapov, K et al. (2021). Improving the installation of fire gasing with gelelating compounds. Problems of emergency situations, 33, 4–14. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/14116
  12. Chernukha, A. et al. (2019). Mathematical modeling of fire-proof efficiency of coatings based on silicate composition. Materials science forum, 1006, 70–75. doi: 10.4028/www.scientific.net/MSF.1006.70
  13. Pietukhov, R., Kireev, A., Slepuzhnikov, E., Chyrkina, M., Savchenko, A (2020). Lifetime research of rapid-hardening foams. Problems of emergency situations, 31, 226–233. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/11675.
  14. Ostapov, K., Kirichenko, I., Senchykhyn, Y. (2019). Improvement of the installation with an extended barrel of cranked type used for fire extinguishing by gel-forming compositions. Eastern-European Journal of Enterprise Technologies, 4(10(100)), 30–36. doi: 10.15587/1729-4061.2019.174592