Results of the heating of reinforced concrete slabs with a corrugated profile during the thermal effect of fire

 

Stepanenko Vitalii

National University of Civil Protection of Ukraine

https://orcid.org/0009-0001-0839-197X

 

Nuianzin Oleksandr

National University of Civil Protection of Ukraine

https://orcid.org/0000-0003-2527-6073

 

Perehin Alina

National University of Civil Protection of Ukraine

https://orcid.org/0000-0003-2062-5537

 

Kryshtal Dmitro

National University of Civil Protection of Ukraine

http://orcid.org/0000-0002-1766-3244

 

Kopytin Dmitro

National University of Civil Protection of Ukraine

http://orcid.org/0000-0003-2505-9394

 

DOI: https://doi.org/10.52363/2524-0226-2024-40-9

 

Keywords: experiment, fire, fragment, furnace, reinforced concrete, steel, steel-reinforced concrete, stove, temperature, reproducibility

 

Аnnotation

 

Three experiments were conducted on heating fragments of reinforced concrete slabs with a corrugated profile in a small-sized installation and the results of the thermal effect of fire at control points were analyzed for the possibility of their use when assessing the fire resistance of the specified building structures. The methodology and results of experiments on heating frag-ments of reinforced concrete slabs with a corrugated profile and the study of the temperature on heated and unheated surfaces, in the reinforcement layer and at control points were substantiated. Conducting the above-mentioned experiments in a small-sized installation for the study of the thermal effect of fire on building structures without mechanical load consisted in the effect of the standard temperature regime of fire with one-sided heating. To measure the temperature in the furnace and in the investigated fragments, thermocouples were used, which can be used to measure temperatures in the range from 0 to 1300 ℃ and thermistors to measure temperatures in the range from -30 to 300 ℃. According to the conducted experiment, there was a uniform distribution of temperatures on the heating surface of the studied small fragment, the maximum temperature reached was 760 ℃. Maximum temperatures: at control points it was 145 ̊℃; on the unheated surface it was 45 ℃, and at the level of the armature – 350 ℃. Studies are limited to 60 minutes, since the temperature can then approach the stationary one. The adequacy of the experimental data was confirmed: the relative deviation did not exceed 4.1 %, and the calculated adequacy criteria (Fisher, Student and Cochrane) were below the critical value. The initial data of the experimental study can serve as the basis for reproducing the temperature field inside the slab.

 

References

 

  1. Nuianzin, O. M. (2023). Rozvytok naukovykh osnov otsinyuvannya vohnestiykosti zalizobetonnykh budivelʹnykh konstruktsiy z vykorystannyam malohabarytnykh modulʹnykh vohnevykh pechey. Dys. ... d-r. tekhn. nauk : 21.06.02, Lʹviv: Lʹvivsʹkyy derzhavnyy universytet bezpeky zhyttyediyalʹnosti, 418. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/20657
  2. Perehin, A. V. (2024). Udoskonalennya eksperymentalʹno-rozrakhunkovoho metodu otsinyuvannya mezhi vohnestiykosti nesuchykh zalizobetonnykh stin. Dys. ... d-r filosofiyi : 261, Cherkasy: CHIPB im. Heroyiv Chornobylya NUTSZ Ukrayiny, 162. Available at: https://chipb.dsns.gov.ua/upload/1/9/9/7/2/4/9/disertaciia-alini-peregin-udoskonalennia-eksperimentalno-rozraxunkovogo-metodu-ociniuvannia-mezi-vognestiikosti-nesucix-zalizobetonnix-stin.pdf
  3. DSTU EN 1363-1:2023. (2023). Vyprobuvannya na vohnestiykistʹ. Chastyna 1. Zahalʹni vymohy (EN 1363-1:2020, IDT).
  4. DBN V.1.1-7-2016. (2016). «Pozhezhna bezpeka obʺyektiv budivnytstva. Zahalʹni vymohy».
  5. DSTU B V.1.1-20:2007. (2007). Zakhyst vid pozhezhi. Perekryttya ta pokryttya. Metod vyprobuvannya na vohnestiykistʹ (EN 1365-2:1999, NEQ).
  6. Nuianzin, O., Kozak, A., Yanishevskyi, V., Kryshtal, V. (2024). Study of the thermal effect of fire on fragments of reinforced concrete columns based on the results of experimental tests. Strength of Materials and Theory of Structures, (112), 202–208.
  7. Perehin, A., Nuianzin, O. (2021). Etapy stvorennya prototypu vohnevoyi ustanovky dlya vyznachennya temperaturnykh rozpodiliv malohabarytnykh frahmentiv zalizobetonnykh konstruktsiy. Nadzvychayni sytuatsiyi: poperedzhennya ta likviduvannya, 5(2), 75–82. Available at: http://repositsc.nuczu.edu.ua/
    handle/123456789/21262
  8. Nuianzin, O., Borysova, A. (2023). Rozrakhunkove otsinyuvannya mezhi vohnestiykosti zalizobetonnoyi plyty za rezulʹtatamy vohnevykh vyprobuvanʹ bez mekhanichnoho navantazhennya. Civil security: Public administration and crisis management, (1(2)), 25–40. http://repositsc.nuczu.edu.ua/handle/123456789/20741
  9. Storozhenko, L. I., Ivanyuk, A. V., Klestov, O. V. (2012). Eksperymentalʹni doslidzhennya stalezalizobetonnykh plyt z armuvannyam reber vertykalʹnymy stalevymy lystamy. Available at: https://reposit.nupp.edu.ua/handle/PoltNTU/8468
  10. Nekora, V. S., Sidney, S. O., Nekora, O. V., Shnal, T. M. (2022). Povedinka stalezalizobetonnoyi plyty pry pozhezhi. Redaktsiyna kolehiya, 34. Available at: https://nuczu.edu.ua/images/topmenu/science/konferentsii/2022/2.pdf#page=35

 

 

 

Оptimization of the composition of neutral gases for fire extinguishing in museum reservoirs

 

Ostapov Kostiantyn

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-1275-741X

 

Oleksii Chaplyhin

State Emergency Service of Ukraine in the Kharkiv region

http://orcid.org/0009-0005-9818-0277

 

Lisniak Andrii

National University of Civil Protection of Ukraine

https://orcid.org/0000-0001-5526-1513

 

Hrytsyna Ihor

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-2581-1614

 

Shevchenko Serhii

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-6740-9252

 

Kryvoruchko Yevhen

National University of Civil Protection of Ukraine

https://orcid.org/0000-0001-7332-9593

 

DOI: https://doi.org/10.52363/2524-0226-2024-40-8

 

Keywords: museum storage facilities, fire extinguishing mixture of neutral gases, architectural, structural and spatial planning solutions, fire protection

 

Аnnotation

 

          An effective fire extinguishing system has been created for extinguishing fires in museum warehouses with a mixture of neutral gases that do not distort museum artistic values and are able to compete with the best foreign examples of volumetric gas fire extinguishing systems. The proportion of the gas mixture consisting of argon, nitrogen and carbon dioxide has been optimized for fire extinguishing of museum art treasures. Taking into account the requirements of the Montreal Protocol on substances that deplete the ozone layer, an analysis of the state of the issue and the specifics of the solution to the problem of gas extinguishing fires in art museums and their fund storages was carried out. The direction of improvement of the existing automatic volumetric fire extinguishing installations with neutral gases has been determined. An effective and relatively inexpensive composition of a mixture of neutral gases has been developed for use in volume extinguishing of possible fires in fund repositories and museums, which ensures the preservation of material and artistic-aesthetic values without their distortion. Volume fractions of two mixtures of neutral gases № 14 (CO2=50 %, N2=40 %, Ar=10 %) and № 15 (СО2= 40 %, N2=50 %, Ar=10 %) were determined, which are close by its composition and have the best fire-extinguishing efficiency indicators in terms of extinguishing time of the model fire 4.6 s and 4.8 s. A test laboratory stand was created, as an analogue of a volumetric gas fire extinguishing installation with a mixer of the components of the proposed working mixture of neutral gases, on which the indicators of the effectiveness of extinguishing model fires were worked out when extinguishing samples of various fragments of artistic underdrawings on parts of line and Whatman. The technical parameters of the working chamber of the laboratory stand are substantiated, and the rational ratio of pressures filling the stand mixer with components of a mixture of neutral gases is recognized based on its mathematical model, which makes it possible to improve existing industrial installations of various sizes. The price reduction of the proposed neutral gas is justified.

 

References

 

  1. Ostapov, K., Kirichenko, I., Senchykhyn, Y. (2019). Improvement of the installation with an extended barrel of cranked type used for fire extinguishing by gel-forming compositions. Eastern-European Journal of Enterprise Technologies, 4(10(100)), 30–36. doi: 10.15587/1729-4061.2019.174592
  2. Ostapov, K. et al. (2022). Improving the Quenching of the Undercarriage Space Due to the Adhesive Properties of Gel-Forming Compositions. Key Engineering Materials, 927, 53–62. doi: 10.4028/p-1su80t
  3. Dubinin et al. (2022). Experimental Investigations of the Thermal Decomposition of Wood at the Time of the Fire in the Premises of Domestic Buildings, Materials Science Forum, 1066, 191–198. doi: 10.4028/p-8258ob
  4. Kirkwood Clive. (2021). The Fire Disaster in the University of Cape Town’s Jagger Library. Cabo, 1, 40–55. doi: 10.10520/ejc-cabo_v2021_n1_a5
  5. DBN V. 2. 5-56:2014 Systemy protypozhezhnoho zakhystu.
  6. Analitychna dovidka pro pozhezhi ta yikh naslidky v Ukraini za 12 misiatsiv 2023 roku. (2024). Instytut derzhavnoho upravlinnia ta naukovykh doslidzhen z tsyvilnoho zakhystu, 39.
  7. Horobchuk, A. (2024). Pozhezhna bezpeka sakralnykh obiektiv v umovakh voiennoho stanu. Problemy ta perspektyvy rozvytku systemy bezpeky zhyttiediialnosti, 242–244. url: https://sci.ldubgd.edu.ua/handle/123456789/13909
  8. DSTU EN 15004-1:2014 Statsionarni systemy pozhezhohasinnia. Systemy hazovoho pozhezhohasinnia. Chastyna 1. Proektuvannia, montuvannia ta tekhnichne obsluhovuvannia (EN 15004-1:2008, IDT).
  9. Dubinin et al. (2020). Investigation of the effect of carbon monoxide on people in case of fire in a building, Ispitivanje djelovanja ugljičnog monoksida na ljude u slučaju požara u zgradi, Sigurnost, 62 (4), 347–357. doi: 10.31306/s.62.4.2
  10. Qichang Dong, Jiacheng Qi, Song Lu, Long Shi. (2024). Synergistic effects of typical clean gaseous fire-extinguishing agents. Fire Safety Journal, 147, 104206. doi: 10.1016/j.firesaf.2024.104206
  11. V Abkhazii zghorilo maizhe 4 tysiachi poloten zolotoho fondu natsionalnykh khudozhnykiv: istoriia bahatorichnoho sabotazhu. Available at: https://zaborona.com/v-abhaziyi-zgorilo-majzhe-4-tysyachi-poloten-zolotogo-fondu/
  12. Російські окупанти розграбували Херсонський художній музей. Available at: https://hromadske.ua/posts/rosijski-okupanti-rozgrabuvali-hersonskij-hudozhnij-muzej
  13. 119878 Ukraina, MPK A62C31/02. Nasadok prykhovanyi vysuvnyi dlia ustanovok hazovoho pozhezhohasinnia (varianty). Khazova N..; zaiavnyk ta patentovlasnyk OOO «Pozhtekhnika» – a201701105; zaiav. 11.03.2016; opubl. 25.09.2017, Biul. № 18.
  14. Paul Papas, Changmin Cao, Wookyung Kim, Eli Baldwin, Adam Chattaway. (2023). Fire suppression using trifluoroiodomethane (CF3I)-carbon dioxide (CO2) mixtures. Proceedings of the Combustion Institute, 39, 3, 3765–3773. doi: 10.1016/j.proci.2022.07.257
  15. Matviienko, V., Kovtun, O. (2014). Konferentsiia storin Videnskoi konventsii pro okhoronu ozonovoho sharu. Ukrainska dyplomatychna entsyklopediia, 1, 760.
  16. Qi Yang, Jiaqi Zhang, Yu Gao, Xiaomeng Zhou, Haijun Zhang. (2023). Toward better Halon substitutes: Effects of H content on pyrolytic and fire-suppressing mechanisms of ozone-friendly fluorinated alkanes. Journal of Molecular Structure, 1285, 135506. doi: 10.1016/j.molstruc.2023.135506
  17. John L. Pagliaro, Gregory T. Linteris, Peter B. Sunderland, Patrick T. Baker. (2015). Combustion inhibition and enhancement of premixed methane-air flames by halon replacements. Combustion and Flame, 162, 1, 41–49. doi: 10.1016/j.combustflame.2014.07.006

Silicophosphate fireproof coatings for building finishing materials

 

Lysak Nataliia

National University of Civil Protection of Ukraine

https://orcid.org/0000-0001-5338-4704

 

Skorodumova Olga

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-8962-0155

 

Chernukha Anton

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-0365-3205

 

Sharshanov Andrew

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-9115-3453

 

Goncharenko Yana

National University of Civil Protection of Ukraine

http://orcid.org/0000-0002-1766-3244

 

Shcherbak Serhii

National University of Civil Protection of Ukraine

http://orcid.org/0000-0003-1133-0120

 

DOI: https://doi.org/10.52363/2524-0226-2024-40-6

 

Keywords: silica, fire-resistant coatings, phosphate buffers, building materials, heat resistance, fire resistance, wood, expanded polystyrene

 

Аnnotation

 

The composition of silicophosphate composition based on liquid glass for fire protection of building finishing materials has been developed. The compositions were prepared by mixing aqueous solutions of liquid glass and acetic acid with the addition of phosphate buffer solutions with a pH of 6–8. The phase composition of the experimental compositions was investigated by infrared spectroscopy and the formation of Si–O–P bonds was established, which indicates the incorporation of phosphate ions into the siloxane framework of polysilicic acid gels. It was established that the polycondensation mechanism is influenced by the pH value of the phosphate buffer solution, as well as its content. The use of a buffer solution with a pH of 6 leads to the initialization of mainly net polycondensation in liquid glass sols. Increasing the pH to 7–8 ensures linear polycondensation of polysilicic acid, which increases the homogeneity of the gel coating, provides elasticity, and increases its fire-retardant effect. Conducted fire tests showed that the best fire-resistant properties have systems with a buffer solution content of 20–25 % with a pH of 7, which provide maximum resistance to fire and minimal loss of mass of samples during exposure to high temperatures. For such compositions, the 1st group of flame retardant efficiency is established, and the treatment of wood samples with them allows the material to be transferred to the "high-flammability" group. Extruded polystyrene samples covered with the developed compositions do not burn, the absence of burning drops is noted. The obtained results emphasize the prospects for the further development of such systems for the protection of building materials.

 

References

 

  1. Zhang, C., Jiang, Y., Li, S., Huang, Z., Zhan, X., Ma, N., Tsai, F. (2022). Recent trends of phosphorus-containing flame retardants modified polypropylene composites processing. Heliyon, 8(11), e11225. doi: 10.1016/ j.heliyon.2022.e11225
  2. Varganici, C., Rosu, L., Bifulco, A., Rosu, D., Mustata, F., Gaan, S. (2022). Recent advances in flame retardant epoxy systems from reactive DOPO–based phosphorus additives. Polymer Degradation and Stability, 202, 110020. doi: 10.1016/j.polymdegradstab.2022.110020
  3. Zheng, T., Wang, W., Liu, Y. (2021). A novel phosphorus‐nitrogen flame retardant for improving the flame retardancy of polyamide 6: Preparation, properties, and flame retardancy mechanism. Polymers for Advanced Technologies, 32(6), 2508–2516. doi:10.1002/pat.5281
  4. Yan, Y., Liang, B. (2019). Flame-retardant behavior and mechanism of a DOPO-based phosphorus–nitrogen flame retardant in epoxy resin. High Performance Polymers, 31(8), 885–892. doi:10.1177/0954008318805794
  5. Giraudo, M., Dubé, M., Lépine, M., Gagnon, P., Douville, M., Houde, M. (2017). Multigenerational effects evaluation of the flame retardant tris(2-butoxyethyl) phosphate (TBOEP) using Daphnia magna. Aquatic Toxicology, 190, 142–149. doi: 10.1016/j.aquatox.2017.07.003
  6. Bolshova, T., Shvartsberg, V., Shmakov, A. (2021). Synergism of trimethylphosphate and carbon dioxide in extinguishing premixed flames. Fire Safety Journal, 125, 103406. doi: 10.1016/j.firesaf.2021.103406
  7. Chupeau, Z., Bonvallot, N., Mercier, F., Bot, B. L., Chevrier, C., Glorennec, P. (2020). Organophosphorus Flame Retardants: A global review of indoor contamination and human exposure in Europe and epidemiological evidence. International Journal of Environmental Research and Public Health, 17(18), 6713. doi: 10.3390/ijerph17186713
  8. Giraudo, M., Douville, M., Houde, M. (2015). Chronic toxicity evaluation of the flame retardant tris (2-butoxyethyl) phosphate (TBOEP) using Daphnia magna transcriptomic response. Chemosphere, 132, 159–165. doi: 10.1016/j.chemosphere.
    2015.03.028
  9. Wang, K., Huang, W., Tian, Q., Tu, C., Yang, C., Yan, W. (2024). Multiple synergistic effects of silicon-containing flame retardants and DOPO derivative enhance the flame retardancy of epoxy resin. Polymer-Plastics Technology and Materials, 63(10), 1294–1305. doi: 10.1080/25740881.2024.2328617
  10. Lysak, N., Skorodumova, O., Chernukha, A. (2023). Development of a fire-proof coating containing silica for polystyrene. Problems of Emergency Situations, 2(38), 192–202. doi: 10.52363/2524-0226-2023-38-10
  11. Skorodumova, О., Tarakhno, O., Chebotareva, O., Bajanova, K. (2022). Silicon protective coatings for textile materials based on liquid glass. Problems of Emergency Situations, 1(35), 109–119. doi: 10.52363/2524-0226-2022-35-8
  12. DSTU 4479:2005 Rechovyny vohnezakhysni vodorozchynni dlia derevyny. Zahalni tekhnichni vymohy ta metody vyprobuvannia. Chynnyi z 01.10.2006. Кyiv: Derzhspozhyvstandart Ukrainy, 2006, 17.
  13. DSTU 8829:2019. Pozhezhovybukhonebezpechnist rechovyn i materialiv. Nomenklatura pokaznykiv i metody yikhnoho vyznachennia. Klasyfikatsiia. Chynnyi z 01.01.2020. Vyd. ofits. Kyiv: UkrNDNTs, 2020, 75.
  14. Karan, R., Pal, P., Maiti, P., Das, K. (2021). Structure, properties and in-vitro response of SiO2-Na2O-CaO-P2O5 system, based glass-ceramics after partial replacement of Na2O by Li2O. Journal of Non-Crystalline Solids, 556, 120554. doi: 10.1016/j.jnoncrysol.2020.120554
  15. Zribi, M., Baklouti, S. (2021). Investigation of phosphate based geopolymers formation mechanism. Journal of Non-Crystalline Solids, 562, 120777. doi: 10.1016/j.jnoncrysol.2021.120777
  16. Stýskalík, A., Škoda, D., Moravec, Z., Babiak, M., Barnes, C. E., Pinkas, J. (2015). Control of micro/mesoporosity in non-hydrolytic hybrid silicophosphate xerogels. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(14), 7477–7487. doi: 10.1039/C4TA06823H

 

 

 

Мodel of spill shape and size when liquid is leaking and burning

 

Oliinik Volodymyr

National University of Civil Protection of Ukraine

http://orcid.org/0000-0002-5193-1775

 

Basmanov Oleksii

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-6434-6575

 

DOI: https://doi.org/10.52363/2524-0226-2024-40-7

 

Keywords: flammable liquid spill, spill fire, spill form, steady state

 

Аnnotation

 

A model was built to determine the maximum length and width of a spill of a flammable liquid burning and flowing down an inclined plane, under the condition of a constant speed of its outflow. The model is based on a parabolic differential equation that describes the thickness of the liquid layer on the soil surface. It is shown that the maximum spill length and width are achieved in a steady state, which occurs due to the establishment of a balance between the amount of liquid entering the spill due to leakage and the amount of liquid consumed due to burnout. As the angle of inclination increases, the shape of the spill becomes more and more elongated along the direction of the surface inclination. A decrease in the linear burnout rate or an increase in the volume flow rate has the same effect. On the contrary, decreasing the angle of inclination of the surface and increasing the linear speed of burning or decreasing the volumetric flow rate leads to the fact that the shape of the spill approaches a circle. It is shown that for surface inclination angles of no more than 20º, there is a similarity in the processes of liquid spreading. This means that an increase in the volume flow rate is equivalent to a linear transformation of the spatial and temporal coordinates with a simultaneous decrease in the angle of inclination and the linear burnout rate. An algorithm for calculating the maximum length and maximum width of a spill for an arbitrary combustible liquid at a given volume intensity of flow on an inclined surface is built, which is based on the similarity of the processes of liquid spreading on an inclined surface and uses diagrams of the dependence of the maximum length and width of the spill on the angle of inclination of the surface and the linear speed of burning for a reference volumetric flow rate of 10 l/s. The obtained results can be used to determine the height of the flame and the density of the heat flow from the fire to nearby technological objects.

 

References

 

  1. Liu, J., Li, D., Wang, Z., & Chai, X. (2021). A state-of-the-art research progress and prospect of liquid fuel spill fires. Case Studies in Thermal Engineering, 28, 101421. doi: 10.1016/j.csite.2021.101421
  2. Vasilchenko, A., Otrosh, Y., Adamenko, N., Doronin, E., & Kovalov, A. (2018). Feature of fire resistance calculation of steel structures with intumescent coating. MATEC Web of Conferences, 230, 02036. doi: 10.1051/matecconf/201823002036
  3. Abdolhamidzadeh, B., Abbasi, T., Rashtchian, D., Abbasi, S. A. (2011). Domino effect in process-industry accidents – An inventory of past events and identification of some patterns. Journal of Loss Prevention in the Process Industries, 24(5), 575–593. doi: 10.1016/j.jlp.2010.06.013
  4. Amin, M. T., Scarponi, G. E., Cozzani, V., & Khan, F. (2024). Improved pool fire-initiated domino effect assessment in atmospheric tank farms using structural response. Reliability Engineering & System Safety, 242, 109751. doi: 10.1016/j.ress.2023.109751
  5. Reniers, G., Cozzani, V. (2013). Features of Escalation Scenarios. Domino Effects in the Process Industries, 30–42. doi: 10.1016/B978-0-444-54323-3.00003-8
  6. Etkin, D. S., Horn, M., Wolford, A. (2017). CBR-Spill RISK: Model to Calculate Crude-by-Rail Probabilities and Spill Volumes. International Oil Spill Conference Proceedings, 2017(1), 3189–3210. doi: 10.7901/2169-3358-2017.1.3189
  7. Liu, S., Liang, Y. (2021). Statistics of catastrophic hazardous liquid pipeline accidents. Reliability Engineering & System Safety, 208, 107389. doi: 10.1016/j.ress.2020.107389
  8. Guo, Q., Li, Y. Z., Ingason, H., Yan, Z., Zhu, H. (2022). Study on spilled liquid from a continuous leakage in sloped tunnels. Tunnelling and Underground Space Technology, 120, 104290. doi: 10.1016/j.tust.2021.104290
  9. He, J., Yang, L., Ma, Y., Yang, D., Li, A., Huang, L., & Zhan, Y. (2020). Simulation and application of a detecting rapid response model for the leakage of flammable liquid storage tank. Process Safety and Environmental Protection, 141, 390–401. doi: 10.1016/j.psep.2020.04.053
  10. Zhao, J., Zhu, H., Zhang, J., Huang, H., & Yang, R. (2020). Experimental study on the spread and burning behaviors of continuously discharge spill fires under different slopes. Journal of Hazardous Materials, 392, 122352. doi: 10.1016/j.jhazmat.2020.122352
  11. Li, Y., Meng, D., Yang, L., Shuai, J. (2022). Experimental study on the burning rate of continuously released spill fire on open surface with measurement of burning fuel thickness. Case Studies in Thermal Engineering, 36, 102217. doi: 10.1016/j.csite.2022.102217
  12. Li, Z., Wang, Q., Li, H., Tang, F. (2023). Experimental study on spread radius and burning rate of spill fires on a fine sand substrate. Journal of Thermal Analysis and Calorimetry, 148 (21), 12109–12118. doi: 10.1007/s10973-023-12535-0
  13. Keller, J., Simmons, C. (2005). The Influence of Selected Liquid and Soil Properties on the Propagation of Spills Over Flat Permeable Surfaces. Pacific Northwest National Laboratory. Available at: https://www.pnnl.gov/main/publications/
    external/technical_reports/PNNL-15058.pdf
  14. Abramov, Y., Basmanov, O., Khmyrov, I., & Oliinik, V. (2022). Justifying the experimental method for determining the parameters of liquid infiltration in bulk material. Eastern-European Journal of Enterprise Technologies, 4/10(118), 24–29. doi: 10.15587/1729-4061.2022.262249
  15. Abbasi, T., Kumar, V., Tauseef, S. M., & Abbasi, S. A. (2018). Spread rate of flammable liquids over flat and inclined porous surfaces. Journal of Chemical Health & Safety, 25(5), 19–27. doi: 10.1016/j.jchas.2018.02.004
  16. Sahin, E., Lattimer, B., Duarte, J. (2023). Assessing spill fire characteristics through machine learning analysis. Annals of Nuclear Energy, 192, 109961. doi: 10.1016/j.anucene.2023.109961
  17. Oliinik, V., Basmanov, O., Mykhailovska, Yu. (2022). Method of experimental determining the parameters of impregnating a liquid into the soil. Problems of Emergency Situations, 2(36), 15–25. doi: 10.52363/2524-0226-2022-36-2
  18. Oliinik, V., Basmanov O. (2023). Model of spreading and burning the liquid on the soil, 1(37), 18–30. doi: 10.52363/2524-0226-2023-37-2

Interaction of an electromagnetic wave with the surface of a real explosive substance.

 

Karpov Artem

National University of Civil Protection of Ukraine

http://orcid.org/0009-0007-9895-1574

 

Kustov Maksim

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-6960-6399

 

Kulakov Oleg

National University of Civil Protection of Ukraine

https://orcid.org/0000-0001-5236-1949

 

Basmanov Oleksii

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-6434-6575

 

Mykhailovska Yuliia

National University of Civil Protection of Ukraine

https://orcid.org/0000-0003-1090-5033

 

DOI: https://doi.org/10.52363/2524-0226-2024-40-5

 

Keywords: dielectric properties, electromagnetic radiation, explosive substance, humanitarian demining, reflection coefficient, wave polarization

 

Аnnotation

 

To develop the theoretical basis for the effective detection and neutralization of explosive substances using electromagnetic radiation. The problem of detecting explosives is extremely relevant in the modern world. The development of new methods based on the physical principles of the interaction of electromagnetic radiation with matter is a promising area of research. An electrodynamic model of the interaction of an electromagnetic wave with the surface of a VR has been developed. The model takes into account an arbitrary angle of incidence of the wave and two main polarizations – TM and TE. Maxwell’s equations with the corresponding boundary conditions at the interface between two media (air – explosive substance) were used to solve the electrodynamics problems. Different types of explosive substances with different dielectric properties were considered as objects of study. To solve the problem, numerical modeling based on the finite difference method was used. The modeling allowed us to calculate the energy coefficients of reflection, refraction, and absorption of electromagnetic radiation by the explosives. It was found that the efficiency of interaction of an electromagnetic wave with a radiation source significantly depends on the angle of its incidence. The optimal incidence angle for most of the studied radiation sources is in the range of 60 to 75 degrees. For the VRs with low dielectric losses, the influence of the dielectric loss tangent on the imaginary part of the refractive angle is insignificant. This indicates that for such materials the main mechanism of interaction is the reflection of an electromagnetic wave. It has been shown that the energy refractive index has a local extreme (maximum) in the range of incident angles from 65 to 85 degrees. The energy reflection coefficient for a plane electromagnetic wave with vertical polarization increases with the increase of the real part of the relative permittivity according to a law close to the logarithmic law for incident angles less than 60 degrees.

 

References

 

  1. Furuta, K., Ishikawa, J. (2009). Anti-personnel landmine detection for humanitarian demining. Berlin, Germany: Springer, 3–81. doi: 1007/978-1-84882-346-4_11
  2. Marsh, L. A., Verre, W. (2019). Combining Electromagnetic Spectroscopy and Ground-Penetrating Radar for the Detection of Anti-Personnel Landmines. Sensors, 19, 15, 3390. doi: 10.3390/s19153390
  3. Onodera, T. (2013). Biochemical Sensors, 351. doi: 1201/b15650-26
  4. Prada, P. A., Rodríguez, M. C. (2016). Demining dogs in Colombia–A review of operational challenges, chemical perspectives, and practical implications. Science & Justice, 56(4), 269–277. doi: 10.1016/j.scijus.2016.03.002
  5. Hemapala, M., Huseyin, C. (2017). Robots Operation in Hazardous Environment. IntechOpen. Croatia, 140. doi: 10.5772/65992
  6. Koyama, E., Hirose, A. (2018). Development of Complex-Valued Self-Organizing-Map Landmine Visualization System Equipped with Moving One-Dimensional Array Antenna. IEICE Transactions on Electronics, 101(1), 35. doi: 10.1587/transele.E101.C.35
  7. Ekenberg, L., Fasth, T., Larsson, A. (2018). Hazards and quality control in humanitarian demining. International Journal of Quality & Reliability Management, 35, 4, 897–913. doi:10.1108/IJQRM-01-2016-0012
  8. Müller, C., Scharmach, M., Gaal, M., Guelle, D., Lewis, A., Sieber, A. (2003). Performance demonstration for humanitarian demining: Test and evaluation of mine searching equipment in detecting mines. Materials Testing, 45(11–12), 504–512. doi: 10.1515/mt-2003-0004
  9. Mikulic, D., Mikulic, D. (2013). Design of demining machines. Springer London, 73–152. doi: 10.1007/978-1-4471-4504-2_5
  10. Kustov, M., Karpov, A. (2023). Sensitivity of explosive materials to the action of electromagnetic fields. Problemy nadzvychainykh sytuatsii: Naukovyi zhurnal, Kharkiv: NUCZU, 1(37), 4–17. doi: 10.52363/2524-0226-2023-37-1
  11. Salam, A., Raza, U., Salam, A., Raza, U. (2020). Electromagnetic characteristics of the soil. Signals in the Soil: Developments in Internet of Underground Things, 39–59. doi: 10.1007/978-3-030-50861-6_2
  12. Krivtsun, V., Nanivska, L. (2023). Factors affecting the demining process. Social Development and Security, 13(5), 38–44. doi: 10.33445/sds.2023.13.5.5
  13. Lee, J. S., Yu, J. D. (2019). Non-destructive method for evaluating grouted ratio of soil nail using electromagnetic wave. Journal of Nondestructive Evaluation, 38, 1–15. doi: 10.1007/s10921-019-0582-9
  14. Kustov, M., Kulakov, O., Karpov, A., Basmanov, O., Mykhailovska, Yu. (2024). Elektrodynamichna model vzaiemodii elektromahnitnoi khvyli z poverkhneiu vybukhonebezpechnoi rechovyny. Problemy nadzvychainykh sytuatsii: Naukovyi zhurnal, Kharkiv: NUCZU, 1(39), 81–95. doi: 10.52363/2524-0226-2024-39-6
  15. Zhou, Q., Yao, X., Hu, J. (2021). Study on the propagation characteristic of electromagnetic wave based on WUSN. Journal of Electromagnetic Waves and Applications, 35(13), 1708–1718. doi: 10.1080/09205071.2021.1915882