Experimental verification of the electromagnetic method of detecting explosive objects.

 

Karpov Artem

National University of Civil Protection of Ukraine

http://orcid.org/0009-0007-9895-1574

 

Kustov Maksim

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-6960-6399

 

Korniienko Ruslan

National University of Civil Protection of Ukraine

http://orcid.org/0000-0003-4854-283X

 

Ivanenko Oleksandr

National University of Civil Protection of Ukraine

http://orcid.org/0009-0006-8566-0084

 

Sharipova Dariya

National University of Civil Protection of Ukraine

http://orcid.org/0000-0001-9926-6041

 

DOI: https://doi.org/10.52363/2524-0226-2025-41-3

 

Keywords: explosive ordnance, humanitarian demining, electromagnetic radiation, radar map

 

 

Аnnotation

 

          A detailed functional diagram of an electromagnetic explosive detector based on a high-performance digital processor of the Blackfin type has been developed. The hardware part of this detector includes a radiating antenna that generates electromagnetic waves and a receiving antenna that registers the reflected signal. It also includes a signal amplification unit, an automatic gain control system that ensures signal stability under changing environmental conditions, digital-to-analog and analog-to-digital converters for processing signals in digital form, and a timing unit that synchronizes all hardware components. This architecture allows for efficient data collection and processing at high transmission speeds and ensures prompt clock updates for the converters. On the basis of the developed prototype detector, a comprehensive experimental test was carried out to confirm the adequacy of the previously created theoretical models described in previous studies. The experiments showed that the electromagnetic properties of the environment, in particular the level of soil watering, as well as the geometric parameters of the explosive object and its design features, significantly affect the detection results. Analysis of radar images obtained during testing of the detector on samples of PMN-2, PFM-1 and TM-62 mines confirmed the effectiveness of the developed approach. In particular, the detector demonstrates the ability to detect a TM-62 mine at depths of up to 50 cm, and for anti-personnel mines (PMN-2 and PFM-1) the effective detection depth is up to 20 cm. These indicators fully meet the tactical requirements for detecting anti-personnel and anti-tank mines. To further improve the recognition accuracy and signal resolution, it is proposed to use modern mathematical models and methods of data flow processing.

 

References

  1. Trebin, M. P. Ivanov, S. V., Melnyk, O. A., Razumova, H. V. (2025). War as a challenge to the existence of civilization. Destructive megatrends of our time: from pandemic to war. Viina yak vyklyk isnuvanniu tsyvilizatsii. Destruktyvni mehatendentsii suchasnosti: vid pandemii do viiny : monographe; Kharkiv: Pravo, 105–130. Available at: http://repository.hneu.edu.ua/handle /123456789/35712
  2. Songtao, Li. (2019). Study on Ground-Penetrating Radar (GPR) Application in Pavement Deep Distress Detection. Chengchao Guo Journal of Transportation Technologies, 9(2), 18. doi: 10.4236/jtts.2019.92015
  3. Frank, J. W. P., Anthony, J. P., David, W. A. (2015). GPR combined with a positioning system to detect anti-personnel landmines. 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), 1–4. doi: 10.1109/IWAGPR.2015. 7292660
  4. Elsheakh, D. M. (2017). Linear/circular polarizations slot antennas for millimmiter wave applications. Microwave and Optical Technology Letters, 59(4), 976–983. doi: 10.1002/mop.30435
  5. Indelicato, A. (2017). The Impact of Frequency in Surveying Engineering Slopes Using Ground Penetrating Radar. International Journal of Geosciences, 8(3), 296–304. doi:10.4236/ijg.2017.83014
  6. Saranya, S., Sudha, G., Rithika, B., Alagappan, A., Sanjeev, D. (2024). Ground Penetrating Radar For Identifying Mines In A Minefield. In 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) IEEE, 1–5. doi: 10.1109/ICPECTS62210.2024.10780419
  7. Abufares, L., Chen, Y., Al-Qadi, I. L. (2025). Asphalt concrete density monitoring during compaction using roller-mounted GPR. Automation in Construction, 174, 106158. doi: 10.1016/j.autcon.2025.106158
  8. Liu, Y., Zhang, Z., Yuan, Y., Zhu, Y., Wang, K. (2025). Quantitative Evaluation of Internal Pavement Distresses Based on 3D Ground Penetrating Radar. The Baltic Journal of Road and Bridge Engineering, 20(1), 45–69. doi: 10.7250/bjrbe.2025-20.653
  9. Cui, L., Li, L., Zhang, W., Sun, F., Fan, D., Zhang, H. (2025). Advances of deep learning application in qualitative and quantitative detection of road subsurface distress using ground penetrating radar: A review. Measurement, 247, 116760. doi: 10.1016/j.measurement.2025.117007
  10. Wang, W., Du, W., Cheng, S., Zhuo, J. (2025). Numerical Simulation Study on the Impact of Blind Zones in Ground Penetrating Radar. Sensors, 25(4), 1252. doi: 10.3390/s25041252
  11. Lambot, S., Wu, K., Sluÿters, A., Vanderdonckt, J. (2024). The Full‐Wave Radar Equation for Wave Propagation in Multilayered Media and Its Applications. Ground Penetrating Radar: From Theoretical Endeavors to Computational Electromagnetics, Signal Processing, Antenna Design and Field Applications, 123–160. doi: 10.1002/9781394284405.ch5
  12. Sainson, S., Sainson, L., Sainson, S. (2017). Electromagnetic seabed logging. Springer International Publishing, 19, 536. doi: 10.1007/978-3-319-45355-2
  13. Kustov, M., Karpov, A. (2023). Sensitivity of explosive materials to the action of electromagnetic fields. Проблеми надзвичайних ситуацій. Харків: НУЦЗ України, 1(37), 4–17. doi: 10.52363/2524-0226-2023-37-1
  14. Kustov, M. V., Kulakov, O. V., Karpov, A. A., Basmanov, O. YE., Mykhaylovsʹka, YU. V. (2024). Elektrodynamichna modelʹ vzayemodiyi elektromahnitnoyi khvyli z poverkhneyu vybukhonebezpechnoyi rechovyny. Problemy nadzvychaynykh sytuatsiy: Naukovyy zhurnal, Kharkiv: NUTSZ Ukrayiny, 1 (39). 81–95. doi: 10.52363/2524-0226-2024-39-6
  15. Karpov, A. A., Kustov, M. V., Kulakov, O. V., Basmanov, O. YE., Mykhaylovsʹka, YU. V. (2024). Vzayemodiya elektromahnitnoyi khvyli z poverkhneyu realʹnoyi vybu-khonebezpechnoyi rechovyny. Problemy nadzvychaynykh sytuatsiy. Cherkasy: NUTSZ Ukrayiny, 2(40), 57–71. doi: 10.52363/2524-0226-2024-40-5

 

 

 

 

 

Modeling of heat flow from burning oil tanks.

 

Basmanov Oleksii

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-6434-6575

 

Karpova Daryna

National University of Civil Protection of Ukraine

http://orcid.org/0000-0002-1692-3630

 

Morshch Evgen

State Research Institute of Cybersecurity and

Information Protection Technologies

http://orcid.org/0000-0003-0131-2332

 

Harbuz Serhii

National University of Civil Protection of Ukraine

http://orcid.org/0000-0001-6345-6214

 

Benediuk Vadim

National University of Civil Protection of Ukraine

http://orcid.org/0000-0002-5109-5295

 

Zazymko Oleksandr

National University of Civil Protection of Ukraine

http://orcid.org/0000-0001-7496-0248

 

DOI: https://doi.org/10.52363/2524-0226-2025-41-2

 

Keywords: fire of flammable liquid, radiating surface of the flame, thermal radiation flux

 

Аnnotation

 

A model was developed to determine the density of heat flux by radiation from a fire in a vertical steel tank with an oil product. The model takes into account the deformation of the flame under the in fluence of wind: the tilt of the flame axis and the expansion of its base to leeward. The proposed ap proach is based on the known empirical dependencies of the flame length and the angle of its deviation from the vertical axis depending on wind speed, specific mass burn rate of the liquid, and tank diameter. These dependencies are used to determine the flame length at an arbitrary point on the flame base. This makes it possible to construct the equation of the radiating surface of the flame in a parametric form. The resulting surface has a conical shape with an elliptical base extended beyond the tank from the lee ward side. The relative expansion of the flame base outside the tank increases with the wind speed and decreases with the diameter of the tank. An algorithm for calculating the heat flux density by radiation from a flame to an arbitrary site given by spatial coordinates and a normal vector has been developed. The algorithm uses the coverage of the flame base with a regular grid, followed by the application of numerical differentiation methods to determine the normal vector to the radiating surface of the flame and numerical integration methods to estimate the view factor between the flame and the site heated by the fire. It is shown that the expansion of the tank base leads to a significant increase in the heat flux density on the leeward side of the tank. The results obtained can be used to determine the consequences of the thermal impact of the fire on neighboring oil tanks and other process equipment, as well as to determine the safe location zones for equipment and personnel involved in localizing and eliminating the fire.

 

References

  1. NAPB 05.035 – 2004. Instruction on extinguishing fires in tanks with oil and oil products.
  2. Landucci, G., Salzano, E., Taveau, J., Spadoni, G., Cozzani, V. (2013). De tailed studies of domino scenarios. Domino effects in the process industries, 229–243. doi: 10.1016/B978-0-444-54323-3.00011-7
  3. Nizhnyk, V. V., Klymas, R. V., Odynets, A. V. (2022). Extinguishing fires at oil and oil product warehouses under combat conditions. Theory and practice of fire ex tinguishing and emergency situations: Proceedings of the XIII International Scientific and Practical Conference, 30–32.
  4. Analytical report on fires and their consequences in Ukraine for 2 months of 2024. Available at: https://idundcz.dsns.gov.ua/upload/2/0/6/1/9/6/1/analitychna dovidka-pro-pojeji-022024.pdf
  5. Hulida, E. M., Kozak, Y. Y. (2020). Ensuring fire safety in oil and oil products storage tank parks. Bulletin of the Prydniprovska State Academy of Civil Engineering and Architecture, 6, 69. doi: 10.30838/J.BPSACEA.2312.241120.69.700
  6. Ferents, N. O., Vovk, S. Ya., Miller, O. V. (2017). Analysis of emergency situ ations and accidents in oil and oil product storage tank parks. In Y. Ya. Kozak (Ed.), Fire safety, 31, 125–129. Available at: http://nbuv.gov.ua/UJRN/Pb_2017_31_20
  7. Dominik, A. M., Nahirniak, Yu. M., Freyuk, D. V. (2024). Analysis of studies of the negative impact of thermal flow from the fire source on surrounding objects. Fire Safety, 45, 39–45. doi: 10.32447/20786662.45.2024.05
  8. Babadjanova, O. F. (2019). Analysis of the development of accidents at the oil depot. In Theory and practice of firefighting and emergency situation liquidation: Mate rials of the 10th International Scientific and Practical Conference, 173–174. Available at: https://sci.ldubgd.edu.ua/bitstream/123456789/6503/1/3.pdf
  9. Boichenko, S. V., Kalmykova, N. G. (2020). Causal relationship between hy drocarbon emissions and gasoline losses in horizontal tanks. Science-Intensive Tech nologies, 2, 218–235. doi: 10.18372/2310-5461.46.14810
  10. Serikova, O. M. (2023). Improving the level of environmental safety in areas adjacent to liquid hydrocarbon storage tanks. Technogenic and Environmental Safety, 14(2), 50–57. doi: 10.52363/2522-1892.2023.2.6
  11. Khatkova, L., Dagil, V., Dagil, I. (2022). Quantitative risk assessment of fire occurrence in oil and oil product tanks due to the spontaneous ignition of pyrophoric deposits. Emergencies: Prevention and Elimination, 6(2), 101–108. doi: 10.31731/2524.2636.2022.6.2.101-107
  12. Savinovska, V. I., Fedolyak, N. V., Lialyuk-Viter, H. D. (2024). On the issue of ensuring fire safety of high-risk objects in wartime conditions. In Proceedings of the V International Scientific and Practical Internet Conference, 197–200.
  13. Liu, C., Ding, L., Jangi, M., Ji, J., Yu, L., Wan, H. (2020). Experimental study of the effect of ullage height on flame characteristics of pool fires. Combustion and Flame, 216, 245–255. doi: 10.1016/j.combustflame.2020.03.009
  14. Xu, L., Lu, Y., Ding, C., Guo, H., Liu, J., Zhao, Y. (2022). A generic flame shape model and analytical models for geometric view factor calculation on the fire ex posure surface. International Journal of Thermal Sciences, 173, 107392. doi: 10.1016/j.ijthermalsci.2021.107392
  15. Fleury, R. (2011). Evaluation of Thermal Radiation Models for Fire Spread Between Objects. Proceedings, Fire and Evacuation Modeling Technical Conference. doi: 10.26021/1472
  16. Sasaki, K. (2024). View factor of a spheroid and an ellipse from a plate ele ment. Journal of Quantitative Spectroscopy and Radiative Transfer, 326, 109102. doi: 10.1016/j.jqsrt.2024.109102
  17. Pritchard, M. J., Binding, T. M. (1992). FIRE2: A New Approach for Predict ing Thermal Radiation Levels from Hydrocarbon Pool Fires. IChemE Symposium, 130, 491–505.

Аcoustic monitoring of sources of emergency situations related to the device of firearms

 

Tiutiunyk Vadym

National University of Civil Protection of Ukraine

http://orcid.org/0000-0001-5394-6367

 

Levterov Alexander

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0001-5926-7146

 

Tiutiunyk Olga

Simon Kuznets Kharkiv National University of Economics

https://orcid.org/0000-0002-3330-8920

 

Usachov Dmytro

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-1140-9798

 

DOI: https://doi.org/10.52363/2524-0226-2024-40-19

 

Keywords: monitoring, identification, acoustic signal, signal filtration, spectral analysis, amplitude-frequency characteristic

 

 

Аnnotation

The method of identifying the facts of the use of various types of firearms has been improved based on the use of the average characteristic of the acoustic spectrum of a shot, by determining the characteristic frequencies with maximum amplitude values, which consists in determining the characteristic frequencies under conditions of exceeding the threshold level of amplitudes of the harmonics of the received signal, determining the energy of such a spectrum, and subtracting the energy of the reference spectrum from the energies of the experimentally obtained spectra of shots. The use of the improved method for studying the characteristics of the acoustic spectra of shots from a Makarov pistol of 9 mm caliber, a traumatic pistol "Fort-14R" and an AK-74 assault rifle of 5.45 mm caliber made it possible to identify the type of firearms by the received acoustic signal with a probability of 0.95. Based on the research results, a functional diagram of the hardware implementation of the improved method for identifying the facts of using various types of firearms by the spectral properties of the received acoustic signal has been developed. The circuit implements a median filter, bandpass filters, a block of characteristic frequencies of shots, an encoding block, a decoder block and a block of logical elements "Conjunction". The identification process consists of analyzing an 18-bit code in 6 groups of 3 digits, at the output of the processing results there is a corresponding combination of signals that determines the belonging to a certain type of weapon and / or its presence in the database of known samples. Based on the hardware implementation circuit of the improved method for identifying the facts of the use of various types of firearms by the spectral properties of the received acoustic signal, the features of the development and operation of a geographic information system for acoustic monitoring of terrorist emergencies and automated identification of facts of use in an urban area are established.

 

References

 

  1. Tiutiunyk,V., Tiutiunyk, O., Usachov, D. (2023). Features of Creating a System of Acoustic Monitoring of Emergency Sources in the Context of the Development of the Smart City Concept. Naukovyy visnyk: Tsyvil’nyy zakhyst ta pozhezhna bezpeka. Kyyiv: Instytut derzhavnoho upravlinnya ta naukovykh doslidzhen’ z tsyvil’noho zakhystu, 2, 58–76. doi: 10.33269/nvcz.2023.2.58-76
  2. Ruban,I., Tiutiunyk, V., Tiutiunyk, O. (2020). Development of Scientific and Technical Basis of Operational Geoinformation Acoustic Monitoring of Sources of Terrorist Threats. Suchasni informatsiyni tekhnolohiyi u sferi bezpeky ta oborony. Kyyiv: Natsional’nyy universytet oborony Ukrayiny, 3(39), 67–80. doi: 10.33099/2311-7249/2020-39-3-67-80
  3. Strilyanyna v supermarketi Walmart u SShA: zahynuly do 10 lyudey. Available at: https://www.bbc.com/ukrainian/news-63726537
  4. U tsentri L’vova 24-richnyy cholovik vlashtuvav strilyanynu v hoteli. Available at: http://zaxid.net/u_tsentri_lvova_24_richniy_cholovik_vlashtuvav_strilyaninu_v_
    goteli_n1553963
  5. Strilyanyna v Rymi: troye zahyblykh, chetvero poranenykh. Available at: https://tsn.ua/svit/strilyanina-v-rimi-troye-zagiblih-chetvero-poranenih-2220880.html
  6. 39-richnoho cholovika zatrymaly za strilyanynu bilya lisu na Zakarpatti. Available at: https://zaxid.net/39_richnogo_cholovika_zatrimali_za_strilyaninu_bilya_
    lisu_na_zakarpatti_n1555003
  7. Strilyanyna v tsentri Paryzha: troye lyudey vbyti, kil’ka poranenykh. Available at: https://www.bbc.com/ukrainian/news-64078090
  8. V amerykans’kiy shkoli stalasya strilyanyna: ye zahybli. Available at: https://tsn.ua/svit/v-amerikanskiy-shkoli-stalasya-strilyanina-ye-zagibli-2249953.html
  9. Ozbroyenyy avtomatom cholovik uvirvavsya do posol’stva Azerbaydzhanu v Irani i vlashtuvav strilyanynu. Available at: https://tsn.ua/svit/ozbroyeniy-avtomatom-cholovik-uvirvavsya-u-posolstvo-azerbaydzhanu-v-irani-i-vlashtuvav-strilyaninu-video-2252779.html
  10. U SShA stalasya strilyanyna: povidomlyayut’ pro 10 zahyblykh. Available at: https://tsn.ua/svit/u-ssha-stalasya-strilyanina-povidomlyayut-pro-10-zagiblih-foto-2248942.html
  11. U SShA stalasya cherhova masova strilyanyna: ye zhertvy. Available at: https://tsn.ua/svit/v-ssha-stalasya-chergova-masova-strilyanina-ye-zhertvi-2254741.html
  12. V universyteti shtatu Michyhan stalasya strilyanyna: ye zahybli ta poraneni. Available at: https://tsn.ua/svit/v-universiteti-shtatu-michigan-stalasya-strilyanina-ye-zagibli-ta-poraneni-2265409.html
  13. Druha masova strilyanyna u Kaliforniyi za kil’ka dniv – semero zahyblykh. Available at: https://www.bbc.com/ukrainian/news-64383486
  14. Spochatku vbyv bat’ka, a potim shche 15 lyudey: zhurnalist pro detali naymasovishoyi strilyanyny v istoriyi Chekhiyi. Available at: https://tsn.ua/exclusive/spochatku-vbiv-batka-a-potim-sche-15-lyudey-zhurnalist-pro-detali-naymasovishoyi-strilyanini-v-istoriyi-chehiyi-2477170.html
  15. U Stambuli stalasya strilyanyna v italiys’kiy tserkvi – odna lyudyna zahynula. Available at: https://pmg.weukraine.tv/novyny/u-stambuli-stalasja-striljanina-v-italijskij-tserkvi-odna-ljudina-zahinula/
  16. U Hruziyi vnaslidok strilyanyny na rynku zahynulo chetvero lyudey. Available at: https://zaxid.net/u_gruziyi_vnaslidok_strilyanini_na_rinku_zaginulo_
    chetvero_lyudey_n1579717
  17. U Detroyti vnaslidok strilyanyny u parku poranennya otrymaly 9 osib. Sered nykh mama i dva syny. Available at: https://lb.ua/world/2024/06/16/619152_
    detroyti_vnaslidok_strilyanini.html
  18. U shkoli v SShA stalasya strilyanyna: zahynuly shchonaymenshe chetvero lyudey, pidozryuyut’ 14-richnoho pidlitka. Available at: https://nv.ua/ukr/world/
    countries/strilyanina-u-ssha-pidlitok-vidkriv-vogon-po-lyudyah-chotiri-lyudini-zaginuli-50448394.html
  19. Na Ternopil’shchyni cholovik rozstrilyav lyudey bilya sil’s’koyi shkoly. Available at: https://lenta.te.ua/society/2024/08/15/203395.html
  20. Rishennya Rady natsional’noyi bezpeky i oborony Ukrayiny vid 4 chervnya 2021 roku «Shchodo udoskonalennya merezhi sytuatsiynykh tsentriv ta tsyfrovoyi transformatsiyi sfery natsional’noyi bezpeky i oborony», Vvedeno v diyu Ukazom Prezydenta Ukrayiny vid 18 chervnya 2021 roku #260/2021. Available at: https://zakon.rada.gov.ua/laws/show/n0039525-21#Text
  21. Tatarnikova,T. O. (2016). Ekspertni doslidzhennya materialiv ta zasobiv tsyfrovoho zvukozapysu: dys. na zdobuttya nauk. stupenya kand. yuryd. nauk: spets. 12.00.09 «Kryminal’nyy protses ta kryminalistyka; sudova ekspertyza; operatyvno-rozshukova diyal’nist’». Kyyiv: Natsional’na akademiya vnutrishnikh sprav, 238. Available at: https://elar.naiau.kiev.ua/server/api/core/bitstreams/e0d8a667-8de2-4465-a190-ce312071ab6f/content
  22. Sniper Location & Gunshot Detection Systems. Available at: https://defense-update.com/20081123_sniper_detection.html#google_vignette
  23. Dennis Mares. Reducing Gunfire through Acoustic Technology. PROBLEM-ORIENTED GUIDES FOR POLICE. RESPONSE GUIDE SERIES NO. 14. GUNSHOT DETECTION. Available at: https://www.researchgate.net/publication/
    365278760_PROBLEM-ORIENTED_GUIDES_FOR_POLICE_RESPONSE_GUIDE_
    SERIES_NO_14_GUNSHOT_DETECTION_Reducing_Gunfire_through_Acoustic_
    Technology
  24. Rheinmetall brings Acoustic Shooter Locating System (ASLS) to market. Available at: https://www.defenceweb.co.za/land/land-land/rheinmetall-brings-acoustic-shooter-locating-system-asls-to-market/
  25. Acoustic shooter locating system. Available at: https://www.rheinmetall.
    com/en/products/c4i/reconnaissance-and-sensor-systems/asls-acoustic-shooter-locating-system#anchor-optional
  26. Boomerang Shooter Detection Technology. Available at: https://milcom-security.com/wp-content/uploads/BoomerangGeneral-102010-5.pdf
  27. Projectile Detection and Cueing (PDCue). Available at: https://defense-update.com/20070511_pdcue.html#google_vignette
  28. PEARL – Gunshot detection sensor for personal or group weapons. Available at: https://issuu.com/robertbreedveld/docs/bss_holland_gunshot_detectie_pearl
  29. Surveillance and Threat Detection Systems. Available at: https://www.
    dbkes.com.tr/brosur/pilarw.pdf
  30. Ofitsiynyy sayt kompaniyi Microflown Avisa. Available at: https://www.
    microflown-avisa.com/technology
  31. Sniper Egg. Detecting the threat. Protecting our forces. Available at: https://defenceforumindia.com/attachments/sniper-egg-pdf.8391/
  32. PinPoint™ – Dismount shot Detection Systems. Available at: https://www.yumpu.com/en/document/view/11476334/pinpointtm-dismount-shot-detection-systems
  33. Lokator dzherela postrilu. Available at: https://ames.kpi.ua/lokator-dzherela-postrilu/
  34. Tiutiunyk,V., Lievtierov, O., Tiutiunyk, O., Usachov, D. (2024). The Peculiarities of Acoustic Monitoring of Large Fires with Rare Organic Substances in Urban Areas. Suchasni informatsiyni tekhnolohiyi u sferi bezpeky ta oborony. Kyyiv: Natsional’nyy universytet oborony Ukrayiny, 1(49), 111–127. doi: 10.33099/2311-7249/2024-49-1-111-127

 

 

Improving the safety level of robots and manipulators

 

Tsymbal Bohdan

National University of Civil Protection of Ukraine

http://orcid.org/0000-0002-2317-3428

 

Rybka Evgeniy

National University of Civil Protection of Ukraine

http://orcid.org/0000-0002-5396-5151

 

Svirzhevskyi Petro

National University of Civil Protection of Ukraine

https://orcid.org/0009-0004-2463-5841

 

Rybalova Olga

National University of Civil Protection of Ukraine

http://orcid.org/0000-0002-8798-4780

 

Petryshchev Artem

National University «Zaporizhzhya Polytechnic»

http://orcid.org/0000-0003-2631-1723

 

DOI: https://doi.org/10.52363/2524-0226-2025-41-1

 

Keywords: occupational risks, occupational safety, cobots, robots, manipulators, artificial intelligence

 

Аnnotation

 

The research focuses on developing a methodology to improve the safety of robots and manipulators in industrial environments. Robotic systems effectively perform complex and dangerous tasks, but at the same time create new risks for workers, which requires systematic assessment and management. An analysis of the main factors affecting the safety of robotic systems was conducted, in particular mechanical, ergonomic, thermal and electrical hazards. Based on this, a universal methodology for assessing occupational risks was developed, which takes into account the severity of possible injuries, the probability of their occurrence, personnel qualifications, the speed of danger onset and the level of awareness of workers. The methodology includes developed checklists, risk assessment matrices and questionnaires for identifying hazardous factors and determining the level of risks. To verify its effectiveness, a test was conducted at a machine-building enterprise, where the risks for employees working with the Absolute Arm 7-Axis measuring arm, the GLOBAL S GREEN 05.07.05 coordinate measuring machine and the ABB IRB 1400 M94A welding robot were assessed. It was found that the most dangerous workplace is the workplace of the ABB IRB 1400 M94A welding robot operator, because he is faced with mechanical, thermal, electrical, ergonomic, combined hazards and radiation hazards, the most important is the risk when the operator contacts live parts or connections, which is 51 (significant). The results showed the key risks at the workplaces, as well as the effectiveness of the developed measures to minimize them. Personnel training, restriction of access to hazardous areas and the use of personal protective equipment were introduced. The methodology can be applied to identify risks and implement safety measures at enterprises in various industries.

 

References

 

  1. Gihleb, R., Giuntella, O., Stella, L., Wang, T. (2022). Industrial robots, workers’ safety, and health. Labour Economics, 78, 102205. doi: 10.1016/j.labeco.2022.102205
  2. Caiazzo, C., Nestić, S., Savković, M. (2022). A systematic classification of key performance indicators in human-robot collaboration. In Sustainable business management and digital transformation: Challenges and opportunities in the post-covid era, 479–489. Springer International Publishing. doi: 10.1007/978-3-031-18645-5_30
  3. Yetkin, B. N., Ulutas, B. H. (2022). A Literature Review on Human-robot Collaborative Environments Considering Ergonomics. In Lecture Notes in Management and Industrial Engineering, 49–60. Springer International Publishing. doi: 10.1007/978-3-031-08782-0_5
  4. Hashemi-Petroodi, S. E., Thevenin, S., Kovalev, S., Dolgui, A. (2020). Operations management issues in design and control of hybrid human-robot collaborative manufacturing systems: A survey. Annual Reviews in Control, 49, 264–276. doi: 10.1016/j.arcontrol.2020.04.009
  5. Gualtieri, L., Rauch, E., Vidoni, R. (2021). Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review. Robotics and Computer-Integrated Manufacturing, 67, 101998. doi: 10.1016/j.rcim.2020.101998
  6. Olsen, T. L., Tomlin, B. (2020). Industry 4.0: Opportunities and challenges for operations management. Manufacturing & Service Operations Management, 22(1), 113–122. doi: 10.1287/msom.2019.0796
  7. Colim, A., Faria, C., Cunha, J., Oliveira, J., Sousa, N., Rocha, L. A. (2021). Physical ergonomic improvement and safe design of an assembly workstation through collaborative robotics. Safety, 7(1), 14. doi: 10.3390/safety7010014
  8. Gualtieri, L., Rauch, E., Vidoni, R., Matt, D. T. (2020). Safety, ergonomics and efficiency in human-robot collaborative assembly: Design guidelines and requirements. Procedia CIRP, 91, 367–372. doi: 10.1016/j.procir.2020.02.188
  9. Kim, W., Peternel, L., Lorenzini, M., Babič, J., Ajoudani, A. (2021). A human-robot collaboration framework for improving ergonomics during dexterous operation of power tools. Robotics and Computer-Integrated Manufacturing, 68, 102084. doi: 10.1016/j.rcim.2020.102084
  10. Chutima, P. (2020). Research trends and outlooks in assembly line balancing problems. Engineering Journal, 24(5), 93–134. doi: 10.4186/ej.2020.24.5.93
  11. Weckenborg, C., Kieckhäfer, K., Müller, C., Grunewald, M., Spengler, T. S. (2019). Balancing of assembly lines with collaborative robots. Business Research, 13(1), 93–132. doi: 10.1007/s40685-019-0101-y
  12. Pinheiro, S., Correia Simões, A., Pinto, A., Van Acker, B. B., Bombeke, K., Romero, D., Vaz, M., Santos, J. (2021). Ergonomics and safety in the design of industrial collaborative robotics. In Studies in systems, decision and control. Springer International Publishing, 465–478. doi: 10.1007/978-3-030-89617-1_42
  13. Srivatsan, H., Myagerimath, A. V., Duffy, V. G. (2024). A systematic review of collaborative robots in ergonomics. In Digital human modeling and applications in health, safety, ergonomics and risk management, 282–297. Springer Nature Switzerland. doi: 10.1007/978-3-031-61066-0_17
  14. Lorenzini, M., Lagomarsino, M., Fortini, L., Gholami, S., Ajoudani, A. (2023). Ergonomic human-robot collaboration in industry: A review. Frontiers in Robotics and AI, 9. doi: 10.3389/frobt.2022.813907
  15. Salvendy, G., Karwowski, W. (2021). Handbook of human factors and ergonomics. Wiley. doi: 10.1002/9781119636113
  16. Adriaensen, A., Costantino, F., Di Gravio, G., Patriarca, R. (2021). Teaming with industrial cobots: A socio‐technical perspective on safety analysis. Human Factors and Ergonomics in Manufacturing & Service Industries, 32(2), 173–198. doi: 10.1002/hfm.20939
  17. Martinetti, A., Chemweno, P. K., Nizamis, K., Fosch-Villaronga, E. (2021). Redefining safety in light of human-robot interaction: A critical review of current standards and regulations. Frontiers in Chemical Engineering, 3. doi: 10.3389/fceng.2021.666237
  18. Michalos, G., Karagiannis, P., Dimitropoulos, N., Andronas, D., Makris, S. (2021). Human robot collaboration in industrial environments. In The 21st century industrial robot: When tools become collaborators, 17–39. Springer International Publishing. doi: 10.1007/978-3-030-78513-0_2
  19. Makris, S., Michalos, G., Dimitropoulos, N., Krueger, J., Haninger, K. (2024). Seamless human–robot collaboration in industrial applications. In Lecture notes in mechanical engineering, 39–73. Springer Nature Switzerland. doi: 10.1007/978-3-031-54034-9_2
  20. Colim, A., Carneiro, P., Costa, N., Faria, C., Rocha, L., Sousa, N., Silva, M., Braga, A. C., Bicho, E., Monteiro, S., Arezes, P. M. (2020). Human-Centered approach for the design of a collaborative robotics workstation. In Occupational and environmental safety and health II, 379–387. Springer International Publishing. doi: 10.1007/978-3-030-41486-3_41
  21. Kopp, T., Baumgartner, M., Kinkel, S. (2020). Success factors for introducing industrial human-robot interaction in practice: An empirically driven framework. The International Journal of Advanced Manufacturing Technology. doi: 10.1007/s00170-020-06398-0
  22. Keshvarparast, A., Battini, D., Battaia, O., Pirayesh, A. (2024). Collaborative robots in manufacturing and assembly systems: Literature review and future research agenda. Journal of Intelligent Manufacturing, 35, 2065–2118. doi: 10.1007/s10845-023-02137-w
  23. Duan, J., Zhuang, L., Zhang, Q., Zhou, Y., Qin, J. (2024). Multimodal perception-fusion-control and human–robot collaboration in manufacturing: A review. The International Journal of Advanced Manufacturing Technology. doi: 10.1007/s00170-024-13385-2
  24. Martinetti, A., Chemweno, P. K., Nizamis, K., Fosch-Villaronga, E. (2021). Redefining safety in light of human-robot interaction: A critical review of current standards and regulations. Frontiers in Chemical Engineering, 3. doi: 10.3389/fceng.2021.666237
  25. Keeping workers safe in the automation revolution. (n.d.). Brookings. Available at: https://www.brookings.edu/articles/keeping-workers-safe-in-the-automation-revolution/
  26. Liang, C.-J., Cheng, M. H. (2023). Trends in robotics research in occupational safety and health: A scientometric analysis and review. International Journal of Environmental Research and Public Health, 20(10), 5904. doi: 10.3390/ijerph20105904
  27. Valori, M., Prange-Lasonder, G., Saenz, J., Behrens, R., Bidard, C., Lucet, E., Fassi, I. (2023). Editorial: Safety in close human-robot interaction. Frontiers in Robotics and AI, 10. doi: 10.3389/frobt.2023.1288713
  28. Arents, J., Abolins, V., Judvaitis, J., Vismanis, O., Oraby, A., Ozols, K. (2021). Human–Robot collaboration trends and safety aspects: A systematic review. Journal of Sensor and Actuator Networks, 10(3), 48. doi: 10.3390/jsan10030048
  29. Akalin, N., Kiselev, A., Kristoffersson, A., Loutfi, A. (2023). A taxonomy of factors influencing perceived safety in human–robot interaction. International Journal of Social Robotics. doi: 10.1007/s12369-023-01027-8
  30. Bridgwater, T., Giuliani, M., van Maris, A., Baker, G., Winfield, A., Pipe, T. (2020). Examining profiles for robotic risk assessment. In HRI ‘20: ACM/IEEE international conference on human-robot interaction. ACM. doi: 10.1145/3319502.3374804
  31. Vecellio Segate, R., Daly, A. (2023). Encoding the enforcement of safety standards into smart robots to harness their computing sophistication and collaborative potential: A legal risk assessment for european union policymakers. European Journal of Risk Regulation, 1–40. doi: 10.1017/err.2023.72
  32. Kaonain, T. E., Rahman, M. A. A., Ariff, M. H. M., Yahya, W. J., Mondal, K. (2021). Collaborative robot safety for human-robot interaction in domestic simulated environments. IOP Conference Series: Materials Science and Engineering, 1096(1), 012029. doi: 10.1088/1757-899x/1096/1/012029
  33. Huck, T. P., Münch, N., Hornung, L., Ledermann, C., Wurll, C. (2021). Risk assessment tools for industrial human-robot collaboration: Novel approaches and practical needs. Safety Science, 141, 105288. doi: 10.1016/j.ssci.2021.105288
  34. BS EN ISO 12100:2010. Safety of machinery – General principles for design – Risk assessment and risk reduction (ISO 12100:2010). Effective from 2010-10-09. Official edition. Brussels : BSI, 77. URL: https://nobelcert.com/DataFiles/

FreeUpload/BS%20EN%20ISO%2012100-2010.pdf

  1. Lee, K., Shin, J., Lim, J.-Y. (2021). Critical hazard factors in the risk assessments of industrial robots: Causal analysis and case studies. Safety and Health at Work. doi: 10.1016/j.shaw.2021.07.010
  2. Miyoshi, T., Nakabo, Y., Fukui, H., Yashiro, M., Miyazawa, I., Sakamoto, T., Ando, N., Kuga, T., Kitamura, A., Ohara, K., Kimura, T. (2023). A SafeML extension for a unified risk assessment to diverse service robots. ROBOMECH Journal, 10(1). doi: 10.1186/s40648-023-00245-z
  3. Pantano, M., Pavlovskyi, Y., Schulenburg, E., Traganos, K., Ahmadi, S., Regulin, D., Lee, D., Saenz, J. (2022). Novel approach using risk analysis component to continuously update collaborative robotics applications in the smart, connected factory model. Applied Sciences, 12(11), 5639. doi: 10.3390/app12115639
  4. Alenjareghi, M. J., Keivanpour, S., Chinniah, Y. A., Jocelyn, S., Oulmane, A. (2024). Safe human-robot collaboration: A systematic review of risk assessment methods with AI integration and standardization considerations. The International Journal of Advanced Manufacturing Technology. doi: 10.1007/s00170-024-13948-3
  5. Haggy, A., Philip, A., Jacob, S., Schneider, J., Anchukandan, M., Kranz, P., Daun, M. (2024). Safety assessment of human-robot collaborations using failure mode and effects analysis and bow-tie analysis. In 21st international conference on informatics in control, automation and robotics. SCITEPRESS – Science and Technology Publications, 432–439. doi: 10.5220/0013017500003822
  6. Liu, X., Luo, H., Chen, Q., Wang, K. (2023). Hazard identification and risk assessment of intelligent robots based on virtual reality. In Frontiers in artificial intelligence and applications. IOS Press. doi: 10.3233/faia230801
  7. Hanna, A., Bengtsson, K., Gotvall, P.-L., Ekstrom, M. (2020). Towards safe human robot collaboration – Risk assessment of intelligent automation. In 2020 25th IEEE international conference on emerging technologies and factory automation (ETFA). IEEE. doi: 10.1109/etfa46521.2020.9212127
  8. Delgado Bellamy, D., Chance, G., Caleb-Solly, P., Dogramadzi, S. (2021). Safety assessment review of a dressing assistance robot. Frontiers in Robotics and AI, 8. doi: 10.3389/frobt.2021.667316
  9. David, J., Bridgwater, T., West, A., Lennox, B., Giuliani, M. (2022). Internal state-based risk assessment for robots in hazardous environment. In Towards autonomous robotic systems, 137–152. Springer International Publishing. doi: 10.1007/978-3-031-15908-4_12
  10. Yavorska, O., Khudolii, S., Cheberiachko, Y., Mamaikin, O., Khorolskyi, A. (2024). Assessment of the risk of a dangerous event of a human collision with a remote-controlled robot. E3S Web of Conferences, 567, 01018. doi: 10.1051/e3sconf/202456701018
  11. Aichaoui, N. E. Y., Kovács, T. A. (2024). Risk assessment of industrial collaborative welding robots: A critical review of methodologies and limitations. In Advanced sciences and technologies for security applications/ Springer Nature Switzerland, 149–159. doi: 10.1007/978-3-031-47990-8_14
  12. Colim, A., Costa, S., Cardoso, A., Arezes, P., Silva, C. (2020). Robots and human interaction in a furniture manufacturing industry – risk assessment. In Advances in intelligent systems and computing, Springer International Publishing, 81–90. doi: 10.1007/978-3-030-20497-6_8
  13. Roboty ta robotyzovani prystroyi. vymohy shchodo bezpechnosti promyslovykh robotiv. Chastyna 1. Roboty (EN ISO 10218-1:2011, IDT; ISO 10218-1:2011, IDT) (DSTU EN ISO 10218-1:2018). Available at: https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=81561
  14. Roboty ta robotyzovani prystroyi. vymohy shchodo bezpechnosti promyslovykh robotiv. Chastyna 2. Robotyzovani systemy ta yikhni poyednannya (EN ISO 10218-2:2011, IDT; ISO 10218-2:2011, IDT) (DSTU EN ISO 10218-2:2018). Available at: https://online.budstandart.com/ua/catalog/doc-page.html?

id_doc=81746

  1. Bezpechnistʹ mashyn. zahalʹni pryntsypy proektuvannya. Otsinyuvannya ryzykiv ta zmenshennya ryzykiv (EN ISO 12100:2010, IDT; ISO 12100:2010, IDT) (DSTU EN ISO 12100:2016). Available at: https://online.budstandart.com/ua/

catalog/doc-page.html?id_doc=71627

  1. Roboty ta robotyzovani prystroyi. Vymohy shchodo bezpechnosti robotiv oso-bystoho dohlyadu (EN ISO 13482:2014, IDT; ISO 13482:2014, IDT) (DSTU EN ISO 13482:2019). Available at: https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=88307

Behavior patterns of reinforced concrete structures of modular shelters in explosion conditions

 

Tolok Igor

National University of Civil Protection of Ukraine

http://orcid.org/0000-0001-6309-9608

 

Rybka Evgeniy

National University of Civil Protection of Ukraine

http://orcid.org/0000-0002-5396-5151

 

Pozdieiev Serhii

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-9085-0513

 

Kustov Maksim

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-6960-6399

 

Novhorodchenko Alina

National University of Civil Protection of Ukraine

https://orcid.org/0000-0003-2347-093X

 

Plisko Yuliia

National University of Civil Protection of Ukraine

https://orcid.org/0009-0005-9526-1119

 

DOI: https://doi.org/10.52363/2524-0226-2024-40-18

 

Keywords: modular shelter, reinforced concrete structures, stress-strain state, mathematical modeling, impact of explosions

 

Аnnotation

The results of mathematical modeling of the impact of the explosion and the resulting stress-strain state in reinforced concrete structures of a modular shelter are presented. The compliance of the shelters with the safety conditions required by the current standards of Ukraine is also established. For this purpose, the behavior of the enclosing structures of ground modular shelters under the effects of explosions and the action of penetrating ionizing radiation was investigated, which guarantees the safety of people inside the shelters and their protection from the effects of air strikes. The scientific study obtained results that allow investigating the mechanisms of destruction or loss of integrity of shelter structures and establishing the relationship between these aspects and ensuring the performance of its protective functions under the effects of an explosion during enemy shelling. The results of the study were obtained through the development of a new approach to calculations based on the use of the warhead of the corresponding projectile in TNT equivalent, the explosion distance and the position of the point where the explosion occurs. The corresponding calculations were used in the LS-DYNA software package, where the behavior of reinforced concrete shelter structures under load conditions was mathematically described, and mathematical relations of strength and plasticity theories were also used. And the pressure determined by these parameters can be used to study its impact on structures. The results of mathematical modeling of the behavior of protective shelters under explosion conditions were obtained, which allow us to investigate the mechanisms of destruction or loss of integrity of shelter structures and establish the relationship of these aspects with ensuring the performance of its protective functions under the influence of an explosion. The implementation of the research results is the presentation of technical proposals for modular shelters to protect the population from damage caused by combat operations.

 

References

 

  1. Nekora, V., Nizhnik, V., Pozdyeyev, S., Lucenko, Yu., Mihajlov, V. (2023). Osoblivosti ta perspektivi efektivnogo funkcionuvannya zahisnih sporud civi-lnogo zahistu v umovah bojovih dij. Naukovij visnik: Civilnij zahist ta po-zhezhna bezpeka, (1(15), 149–157. doi: 10.33269/nvcz.2023.1(15). С. 149–157.
  2. Sposib vlashtuvannya zahisnoyi sporudi (ukrittya) v naselenih punktah dlya zahistu civilnogo naselennya: pat. 154965 Ukrayina E04H9/00. № u202301260; zayav. 27.03.2023; opubl. 10.01.2024, Bul. № 2/2024. 2 Available at: https://sis.nipo.gov.
    ua/uk/search/detail/1779578/
  3. Bagatocilove mobilne zbirno-rozbirne zahisne ukrittya: pat. 156538 Ukrayina. E04H9/00. № u202303385;zayav. 10.07.2023; opubl. 10.07.2024, Bul. № 28/2024. 5 Available at: https://sis.nipo.gov.ua/uk/search/detail/1808189/
  4. Modulne zahisne ukrittya: pat. 153093 Ukrayina. E04H9/00. № u202204625 zayav. 07.12.2022; opubl. 17.05.2023, Byul. № 20/2023. 5 s. UA 153093 Available at: https://sis.nipo.gov.ua/uk/search/detail/1736942/
  5. DSTU 9195:2022 “Quickly constructed protective structures of civil defense of modular type”. Effective from December 6, 2022. Official publication. Kyiv SE “UkrNDNTS”. (2023), 15. Available at: https://online.budstandart.com/
    ua/catalog/doc-page.html?id_doc=99454
  6. DBN V.2.2-5:2023 "Civil defense protective structures". Effective from 01.11.2023. Official publication. Kyiv Ministry of Development of Communities, Territories and Infrastructure of Ukraine. Available at: https://online.budstandart.
    com/ua/catalog/doc-page.html?id_doc=104666
  7. Getun, G., Bezklubenko, I., Solomin, A., & Balina, O. (2023). Peculiarities of spatial planning solutions for civil defense protective structures. Modern Problems of Architecture and Urban Planning, (67), 203–220 doi: 10.32347/2077-3455.2023.67.203-220
  8. Novhorodchenko, A., Shnal, T., Yakovchuk, R., Tur, N. (2023) The study of the behavior of reinforced concrete structures of modular shelter in conditions of explosion. Proceedings of CEE 2023 Civil and Environmental Engineering and Architecture. Springer/Rzeszów, Poland,  286–295. Available at: https://www.springerprofessional.de/
    En/the-study-of-the-behavior-of-reinforced-concrete-structures-of-m/26223376
  9. Murray, Y. D., A. Abu-Odeh, R. Bligh. (2007). Evaluation of concrete material model 159, FHWA-HRT-05-063,209. Available at: https://www.fhwa.
    dot.gov/publications/research/infrastructure/structures/05063/05063.pdf
  10. Hallquist, J. O. (2006). LS-DYNA Theory Manual, Livermore software technology corporation: Livermore California / Copyright, USA March, р. 680 Available at: https://www.egr.msu.edu/decs/sites/default/files/content/ls-dyna_theory_manual_2006.pdf
  11. Jonsson, P., Jonsén, P., Andreasson, P., Lundström, T., Hellström, J. (2015). Modelling dam break evolution over a wet bed with smoothed particle hydrodynamics: A Parameter Study. JOURNAL NAME: Engineering, 7(5), 248–260. doi: 10.4236/eng.2015.75022
  12. Bakeer, T. (2009). Collapse analysis of masonry structures under earthquake actions. Publication Series of the Chair of Structural Design, TU Dresden. Available at: https://www.researchgate.net/publication/200634854_Collapse_Analysis_of_Masonry_Structures_under_Earthquake_Actions
  13. Aagaard, B. T., Knepley, M. G., Williams, C. A. (2013). A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. Journal of Geophysical Research: Solid Earth,3059–3079. doi: 10.1002/jgrb.50217