Еlectrodynamic model of the interaction of an electromagnetic wave with the surface of explosive material

 

Kustov Maksim

National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-6960-6399

 

Kulakov Oleg

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0001-5236-1949

 

Karpov Artem

National University of Civil Defence of Ukraine

http://orcid.org/0009-0007-9895-1574

 

Basmanov Oleksii

National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-6434-6575

 

Mykhailovska Yuliia

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0003-1090-5033

 

DOI: https://doi.org/10.52363/2524-0226-2024-39-6

 

Keywords: dielectric constant, dielectric loss tangent, electrodynamic model, electromagnetic wave, explosive object, explosive material

 

Аnnotation

 

An electrodynamic model of the interaction of a microwave electromagnetic wave randomly falling on the surface of an explosive substance as a simple unencased explosive object is constructed. The model was created by solving Maxwell’s equations with appropriate boundary conditions. The model allows for a numerical assessment of the ability of explosives to reflect and localise the energy of electromagnetic waves. The determining parameters for this are the angle of falling of the electromagnetic wave and the parameters of the explosive substance. The application of the model makes it possible to calculate the reflection and refraction coefficients of the electromagnetic field power. It has been shown that for real explosives with small dielectric loss angles, this parameter does not significantly affect the interaction of an electromagnetic wave with the surface of an explosive. The most suitable for remote detection by irradiation with an electromagnetic wave are explosives with a high value of relative permittivity. For explosive substances with a low value of the relative permittivity, a significant amount of electromagnetic energy is refracted through the surface of the explosive substance and this energy can be absorbed by the explosive substance. The degree of absorption is determined by the value of the dielectric loss tangent – the greater the dielectric loss tangent, the more energy must be absorbed. For such explosives, it is possible to detonate them remotely by irradiating them with an electromagnetic wave. Explosive substances with intermediate values of relative permittivity have medium possibilities for remote detection and remote detonation by electromagnetic wave irradiation. Thus, the developed model makes it possible to evaluate the possibility of remote detection and deactivation of explosive objects by irradiating them with an electromagnetic wave.

 

References

 

  1. Kustov, M., Karpov, A., Harbuz, S., Savchenko, A. (2023). Effect of Physical and Chemical Properties of Explosive Materials on the Conditions of their Use. Key Engineering Materials, 952, 143–154. doi:10.4028/p-0H8UnG
  2. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Yu. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4, 10(100), 22– doi:10.15587/1729-4061.2019.176579
  3. Strategic toolkit for assessing risks: a comprehensive toolkit for all-hazards health emergency risk assessment. World Health Organization. (2021), 71. Available at: https://www.who.int/publications/i/item/9789240036086
  4. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1, 10(91), 50–55. doi: 15587/1729-4061.2018.122419
  5. Smoliło, J., Chmiela, A. (2021). The mine liquidation processes in SRK S.A. in a cost approach. Zeszyty Naukowe Politechniki Slaskiej. Seria Organizacji i Zarzadzanie, 153, 429. doi: 10.29119/1641-3466.2021.153.30
  6. Tiutiunyk, V., Ivanets, H., Tolkunov, I., Stetsyuk, E. (2018). System approach for readiness assessment units of civil defense to actions at emergency situations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 99–105. doi: 29202/nvngu/2018-1/7)
  7. Ahmed, I. (2014). Anti-personnel landmines (APLs): A socio-economic and humanitarian perspective. International Journal of Physical and Social Sciences, 4, 4, 99–112. Available at: https://www.indianjournals.com/ijor.aspx?target=ijor:ijpss&
    volume=4&issue=4&article=010
  8. Prem, M., Purroy, M. E., Vargas, J. F. (2022). Landmines: the Local Effects of Demining. TSE Working Paper, 1305, 108 Available at: https://publications.ut-capitole.fr/id/eprint/44388/1/wp_tse_1305.pdf
  9. Behera, R., Biswal, T., Panda, R. (2021). Recent Progress in Explosives: A Brief Review. Current Advances in Mechanical Engineering, 305–315. Available at: https://link.springer.com/chapter/10.1007/978-981-33-4795-3_29
  10. Zapata, F., García-Ruiz, C. (2021). Chemical classification of explosives. Critical Reviews in Analytical Chemistry,51, 7, 656–673. doi: 1080/10408347.2020.1760783
  11. Williams, D. P., Myers, V., Silvious, M. S. Mine Classification With Imbalanced Data. IEEE Geoscience and Remote Sensing Letters, 6, 3, 528–532. doi: 10.1109/LGRS.2009.2021964
  12. Shimoi, N., Takita, Y. (2010). Remote mine sensing technology using a mobile wheeled robot RAT-1. ICCAS 2010, 622–626. doi: 10.1109/ICCAS.2010.5669836
  13. Yoo, L. S., Lee, J. H., Lee, Y. K., Jung, S. K., Choi, Y. (2021). Application of a drone magnetometer system to military mine detection in the demilitarized zone. Sensors, 21(9), 3175. doi: 3390/s21093175
  14. Ramezani, M., Tafazoli, S. (2021). Using artificial intelligence in mining excavators: automating routine operational decisions. IEEE Industrial Electronics Magazine,15, 1, 6–11. doi: 10.1109/MIE.2020.2964053
  15. Daniels, D. (2006). A review of GPR for landmine detection. Sensing and Imaging, 7(3), 90–123. doi: 10.1007/s11220-006-0024-5
  16. Wilson, J., Gader, P., Lee, W., Frigui, H., Ho, K. (2007). A Large-Scale Systematic Evaluation Of Algorithms Using Ground Penetrating Radar For Landmine Detection And Discrimination. IEEE Transactions On Geoscience And Remote Sensing, 45, 8, 2560–2572. doi: 1109/TGRS.2007.900993
  17. Kustov, М., Karpov, A. (2023). Sensitivity of explosive materials to the action of electromagnetic fields. Проблеми надзвичайних ситуацій, 1(37), 4–17. doi: 10.52363/2524-0226-2023-37-1
  18. Landau, L. D., Lifshitz, E. M. (2013). Electrodynamics of continuous media: translated by Sykes J. B., Bell J. S and Kearsley M. J. Pergamon press, Oxford – New York – Toronto – Sydney – Paris – Frankfurt, 475.
  19. Greiner, W. (1998). Classical Electrodynamics (Classical Theoretical Physics). Springer, Dordreht (Holland), 566.