Модель розтікання і горіння рідини на ґрунті

 

Олійник Володимир Вікторович

Національний університет цивільного захисту України

http://orcid.org/0000-0002-5193-1775

 

Басманов Олексій Євгенович

Національний університет цивільного захисту України

http://orcid.org/0000-0002-6434-6575

 

DOI: https://doi.org/10.52363/2524-0226-2023-37-2

 

Ключові слова: розтікання рідини, пожежа розливу, просочення рідини, модель Грін-Ампт

 

Анотація

Об’єктом дослідження є процес розтікання і горіння рідини на ґрунті. Побудовано ма-тематичну модель розтікання рідини на похилій поверхні. Модель являє собою систему з диференціального рівняння параболічного типу, що описує зміну області розливу і товщи-ни шару рідини в кожній точці області, і звичайного диференціального рівняння, що відпо-відає глибині просочення рідини в ґрунт. Припускається, що процес просочення рідини в ґрунт описується моделлю Грін-Ампт, особливістю якої є уявлення про чітку межу між вже змоченим і ще сухим ґрунтом. Під впливом тиску рідини на поверхні і капілярних сил від-бувається переміщення цієї межі вглиб ґрунту. Швидкість просочення визначається гідрав-лічною провідністю змоченого ґрунту, його пористістю і показником капілярності. Ці пара-метри залежать від стану ґрунту і типу рідини і мають визначатися експериментально. Мо-дель розтікання рідини враховує нерівності поверхні шляхом введення в диференціальне рівняння розповсюдження рідини доданку, який містить середню глибину нерівностей по-верхні. Необхідність заповнення цих нерівностей при розтіканні рідини визначає площу ро-зливу. Враховано зменшення об’єму рідини в розливі внаслідок її вигорання. Початкові умови визначаються характером розтікання рідини: миттєвим або неперервним. Миттєвий розлив має місце у випадку катастрофічного руйнування ємності, а неперервний – при пош-кодженні ємності або трубопроводу, внаслідок чого об’єм розлитої рідини поступово збі-льшується. У випадку неперервного витікання рідини диференціальне рівняння розтікання рідини містить доданок з δ-функцією. У випадку миттєвого розливу δ-функцію включає в себе початкова умова. Отримані результати можуть бути використані для розрахунку теп-лового потоку від полум’я над розливом горючої рідини і визначення теплового впливу по-жежі на сусідні технологічні об’єкти.

 

Посилання

 

  1. Raja S., Tauseef S. M., Abbasi T. Risk of Fuel Spills and the Transient Models of Spill Area Forecasting. Journal of Failure Analysis and Prevention. 2018. Vol. 18. P. 445–455. doi: 10.1007/s11668-018-0429-1
  2. Kustov M. V., Kalugin V. D., Tutunik V. V., Tarakhno E. V. Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy khimii i khimicheskoi tekhnologii. 2019. Vol. 1. P. 92–99. doi: 10.32434/0321-4095-2019-122-1-92-99
  3. Mygalenko K., Nuyanzin V., Zemlianskyi A., Dominik A., Pozdieiev S. Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies. 2018. Vol. 1(10). P. 31–37. doi: 10.15587/1729-4061.2018.121727
  4. Etkin D., Horn M., Wolford A. CBR-Spill RISK: Model to Calculate Crude-by-Rail Probabilities and Spill Volumes. International Oil Spill Conference Proceedings. 2017. P. 3189–3210. doi: 10.7901/2169-3358-2017.1.3189
  5. Zhao X., Chen C., Shi C., Zhao D. An extended model for predicting the temperature distribution of large area fire ascribed to multiple fuel source in tunnel. Tunnelling and Underground Space Technology. 2019. Vol. 85. P. 252–258. doi: 10.1016/j.tust.2018.12.013
  6. Kovalov A., Otrosh Y., Rybka E., Kovalevska T., Togobytska V., Rolin I. Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. In Materials Science Forum. Trans Tech Publications Ltd. 2020. Vol. 1006. P. 179–184. doi: 10.4028/www.scientific.net/MSF.1006.179
  7. Dadashov I., Loboichenko V., Kireev A. Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research. 2018. Vol. 37(1). P. 63–77. URL: http://repositsc.nuczu.edu.ua/handle/123456789/6849
  8. Abramov Y. A., Basmanov O. E., Mikhayluk A. A., Salamov J. Model of thermal effect of fire within a dike on the oil tank. Naukovyi Visnyk NHU. 2018. Vol. 2. P. 95–100. doi: 10.29202/nvngu/2018-2/12
  9. Pan Y., Li M., Luo X., Wang C., Luo Q., Li J. Analysis of heat transfer of spilling fire spread over steady flow of n-butanol fuel. International Communications in Heat and Mass Transfer. 2020. Vol. 116. doi: 10.1016/j.icheatmasstransfer.2020.104685
  10. Zhao J., Liu Q., Huang H., Yang R., Zhang H. Experiments investigating fuel spread behaviors for continuous spill fires on fireproof glass. Journal of Fire Sciences. 2017. Vol. 35(1). P. 80–95. doi: 10.1177/0734904116683716
  11. Seo J., Lee J. S., Kim H. Y., Yoon S. S. Empirical model for the maximum spreading diameter of low-viscosity droplets on a dry wall. Experimental Thermal and Fluid Science. 2015. Vol. 61. P. 121–129. doi: 10.1016/j.expthermflusci.2014.10.019
  12. Abramov Yu., Basmanov O., Krivtsova V., Salamov J. Modeling of spilling and extinguishing of burning fuel on horizontal surface. Naukovyi Visnyk NHU. 2019. Vol. 4. P. 86–90. doi: 10.29202/nvngu/2019-4/16
  13. Raja S., Abbasi T., Tauseef S. M., Abbasi S. A. Equilibrium models for predicting areas covered by accidentally spilled liquid fuels and an assessment of their efficacy. Process Safety and Environmental Protection. 2019. Vol. 130. P. 153–162. doi: 10.1016/j.psep.2019.08.009
  14. Meel A., Khajehnajafi S. A comparative analysis of two approaches for pool evaporation modeling: Shrinking versus nonshrinking pool area. Process Safety Progress. 2012. Vol. 34. P. 304–314. doi: 10.1002/prs.11502
  15. Ramli H., Zabidi H. A. Effect of oil spill on hydraulic properties of soil. Malaysian construction research journal. 2015. Vol. 49. URL: https://www.academia.edu/download/62252229/MCRJ_V19N2_520200302-87581-109jtez.pdf
  16. Олійник В. В., Басманов О. Є., Михайловська Ю. В. Метод експеримента-льного визначення параметрів просочення рідини в ґрунт. Проблеми надзвичай-них ситуацій. 2022. Вип. № 2(36). С. 15–25. doi: 10.52363/2524-0226-2022-36-2
  17. Tokunaga T. K. Simplified Green-Ampt Model, Imbibition-Based Estimates of Permeability, and Implications for Leak-off in Hydraulic Fracturing. Water Resources Research. 2020. doi: 10.1029/2019WR026919
  18. Басманов А. Е., Горпинич И. А. Растекание жидкости на негладкой гори-зонтальной поверхности при аварии на железнодорожном транспорте. Проблеми надзвичайних ситуацій. 2014. Вип. № 20. С. 16–20. URL: http://repositsc.nuczu.edu.ua/handle/123456789/248

 

Sensitivity of explosive materials to the action of electromagnetic fields

 

Kustov Maksim Volodumuroovych

National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-6960-6399

 

Karpov Artem Andreyovych

National University of Civil Defence of Ukraine

http://orcid.org/0009-0007-9895-1574

 

DOI: https://doi.org/10.52363/2524-0226-2023-37-1

 

Keywords: explosion, demining of territories, explosive materials, electromagnetic waves, molecular struc-ture, dipole moment, safety of rescuers

 

Аnnotation

 

The analysis was done to define the most common methods of detection and disposal of explosive objects. According to the principle of their operation, the methods were subdivided into 4 classes. It was established that physical methods are the most effective, and most of them are based on the use of electromagnetic waves with various parameters. To define the degree of ef-fect of electromagnetic waves on explosive materials it was reasonable to study their electromag-netic properties. It is shown that the main parameter that quantitatively characterizes the degree of sensitivity of explosive materials to the action of electromagnetic fields is the dipole moment of their molecules. The molecular structure of the most common explosive materials, in particular hexogen, pentaerythritol tetranitrate and trinitrotoluene, tetryl, lead trinitroresorcinate, mercu-ryfulminate and lead azide has been analyzed. It is shown that the molecules of these substances have a two-dimensional structure, while the molecules of hexogen, pentaerythritol tetranitrate, and mercury fulminate are symmetrical. It corresponds to the absence of a dipole moment in such molecules. The dipole moments of asymmetric molecules of trinitrotoluene, tetryl, lead trinitrore-sorcinate, and lead azide were calculated using the method of adding force vectors of dipole moments of interatomic bonds. The calculated data showed that the dipole moments of these sub-stances are significant, so the electromagnetic influence on the activation of these explosive mate-rials cannot be neglected. Partially, the high values of the dipole moments of trinitrotoluene (µ(C7H5N3O6)=2,55 D) and tetryl (µ(C7H5N5O8)=9,27 D) can be explained by an increased num-ber of asymmetric bonds with nitrogen that has a high electronegativity. The obtained data can be used for the development of the safety algorithms to provide a safe work of the rescuers during demining of the territory and when using the devices of an active electromagnetic action in order to prevent the uncontrolled detonation of explosive objects

 

References

 

  1. Barbashyn, V. V., Nazarov, O. O., Ryutin, V. V. (2010). «Osnovy orhanizatsii pirotekhnichnykh robit. Natsionalnyi universytet tsyvilnohozakhystu Ukrainy». Ba-sics of organizing pyrotechnic works. National University of Civil Defenсe of Ukraine, 353. Available at: http://eprints.kname.edu.ua/46622/1/%D0%9D%D0%9F%D0%9E%
  2. D0%9E%D0%9F%D0%A0.pdf
  3. Prem, M., Purroy, M. E., Vargas, J. F. (2022). Landmines: The local effects of demining. Available at: http://tse-fr.eu/pub/126623
  4. Dorn, A. W. (2019). Eliminating Hidden Killers: How Can Technology Help Humanitarian Demining? Stability: International Journal of Security and Develop-ment, 8(1), 5. doi: 10.5334/sta.743
  5. Cardona, L., Jiménez, J., Vanegas, N. (2014). Landmine detection technologies to face the demining problem in Antioquia. Dyna, 81(183), 115–125. doi: 10.15446/dyna.v81n183.37441
  6. Sato, M., Kikuta, K., Chemyak, I. (2018). Dual Sensor “ALlS” for Humanitari-an Demining. In 2018 17th International Conference on Ground Penetrating Ra-dar (GPR), 1–4. doi: 10.1109/ICGPR.2018.8441662
  7. Schultz, G. M., Keranen, J., Miller, J. S., Shubitidze, F. (2014). Acquisition and processing of advanced sensor data for ERW and UXO detection and classification. In Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIX, 9072, 112–120. doi: 10.1117/12.2050876
  8. Yinon, J. (2002). Field detection and monitoring of explosives. TrAC Trends in Analytical Chemistry, 21(4), 292–301. doi: 10.1016/S0165-9936(02)00408-9
  9. Habib, M. K. (2007). Humanitarian demining: reality and the challenge of technology–the state of the arts. International Journal of Advanced Robotic Systems, 4(2), 19. doi: 10.5772/5699
  10. Pakhnуts, I., Khrustalova, S., Khrustalev, K. (2022). System for detection and identification of potentially explosive objects in open area. Innovative Technologies and Scientific Solutions for Industries, 2(20), 106–112. doi: 10.30837/ITSSI.2022.20.106
  11. Montes, H., Mena, L., Fernández, R., Sarria, J., Armada, M. (2016). Inspection platform for applications in humanitarian demining. In Assistive Robotics: Proceed-ings of the 18th International Conference on CLAWAR 2015, 446–453. doi: 10.1142/9789814725248_0055
  12. De Cubber, G., Balta, H., Lietart, C. (2014). Teodor: A semi-autonomous search and rescue and demining robot. In Applied Mechanics and Materials, 658, 599–605. doi: 10.4028/www.scientific.net/AMM.658.599
  13. Akmalov, A. E., Chistyakov, A. A., Dubkova, O. I., Kotkovskii, G. E., Spitsyn, E. M., Buzinov, N. M. (2016, October). Laser desorption of explosives traces at ambi-ent conditions. In Optics and Photonics for Counterterrorism, Crime Fighting, and De-fence XII, 9995, 110–116. doi: 10.1117/12.2241813
  14. Bielecki, Z., Janucki, J., Kawalec, A., Mikołajczyk, J., Pałka, N., Paster-nak, M., Stacewicz, T. (2012). Sensors and systems for the detection of explosive de-vices-an overview. Metrology and Measurement Systems, 19(1), 3–28. doi: 10.2478/v10178-012-0001-3
  15. Cousins, T., Jones, T., Brisson, J., McFee, J., Jamieson, T., Waller, E., Sel-kirk, E. (1998). The development of a thermal neutron activation (TNA) system as a confirmatory non-metallic land mine detector. Journal of Radioanalytical and Nuclear Chemistry, 235(1–2), 53–58. doi: 10.1007/bf02385937
  16. Buryakov, I. (2011). Detection of explosives by ion mobility spectrome-try. Journal of Analytical Chemistry, 66(8). doi: 10.1134/S1061934811080077
  17. Kagan, A. (2022). Counterterrorist detection techniques of explosives by va-por sensors (handheld). In Counterterrorist Detection Techniques of Explosives, 235–251. doi: 10.1016/B978-0-444-64104-5.00012-6
  18. Clifford, E. T., Ing, H., McFee, J. E., Cousins, T. (1999, October). High rate counting electronics for a thermal neutron analysis land mine detector. In Penetrating Radiation Systems and Applications, 3769, 155–166. doi: 10.1117/12.363677
  19. Ishchenko, A. V., Kobets, M. V. (2005). «Zasoby i metody vyiavlennia vy-bukhovykh rechovyn ta prystroiv u borotbi z teroryzmom. Natsionalna akademiiavnu-trishnikhspravUkrainy». Means and methods of detecting explosive substances and devices in the fight against terrorism. National Academy of Internal Affairs of Ukraine, 148. Available at: http://elar.naiau.kiev.ua/bitstream/123456789/18996/1/Kobets%20M.V.%20Zasoby%20i%20metody%20vyaiyvlenaiy%20VP.pdf

 

 

Multifactor model of excavation of an explosive subject diver

 

Ihor Soloviov

Main Directorate of the State Emergency Service of Ukraine in Kherson region

http://orcid.org/0000-0002-0400-6704

 

Victor Strelets

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-9109-8714

 

Dmytro Lovin

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-1066-0286

 

DOI: https://doi.org/10.52363/2524-0226-2021-34-20

 

Keywords: underwater demining, diver-sapper, rise, explosive object, multifactor model

 

Аnnotation

The use of experimental research planning methods has shown that to obtain a multifactor model of lifting an explosive object by a sapper diver from a depth that will take into account both the impact, in case nonlinear, selected parameters and the effects of interaction between them, it is advisable to conduct a multifactorial experiment 3x3x2. Statistical indicators of the time of lifting an explosive object in accordance with such a plan can be obtained using the method of direct expert assessments. As a result, a multi- factor model of lifting an explosive object by divers in the form of a three-factor square polynomial was obtained, the coefficients of which establish a quantitative relationship between the level of training of personnel, external conditions in which he works and lifeguards. Field experiments confirmed the reliability of the developed mathematical model with a significance level of α=0,05. It is shown that when developing operational and technical recommendations, divers need to take into account both the type of diving suit and the effects of the interaction between the level of training of personnel and the conditions in which they work. At the same time, it is possible to ignore the effects of the interaction of the conditions of lifting an explosive object with the suit in which the sapper divers work, as well as the quadratic effect of using a dry or wet suit. It should be expected that in the case of lifting an explosive device, the level of preparedness will be more pronounced in divers-sappers with a primary level, as well as the fact that for them to reduce the effectiveness of underwater demining will be affected by poor external working conditions. During further research, increased attention should be paid to the preparation of diver sappers to work in difficult conditions and to the planning of operational activities of a specialized pyrotechnic unit, as well as the use of the latest technical means of underwater demining.

 

References

  1. Frey, Torsten, Beldowski, Jacek and Maser, Edmund. (2020). Explosive Ordnance in the Baltic Sea: New Tools for Decision Makers. The Journal of Conventional Weapons Destruction, 23, 3, 11. Retrieved from https://commons.lib.jmu.edu/cisr-journal/vol23/iss3/11
  2. Beck AJ, Gledhill M, Schlosser C, Stamer B, Böttcher C, Sternheim J, Greinert J and Achterberg EP. (2018). Spread, Behavior, and Ecosystem Consequences of Conventional Munitions Compounds in Coastal Marine Waters. Frontiers in Marine Science, 5, 141. doi: 10.3389/fmars.2018.00141
  3. Ong, Caroline, Tamara Chapman, Raymond Zilinskas, Benjamin Brodsky and Joshua Newman. (2013). Chemical Weapons Munitions Dumped at Sea: An Interactive Map. James Martin Center for Nonproliferation Studies. Retrieved from http://cns.miis.edu/stories/090806_cw_dumping.htm
  4. Long, Terrance P. (2013). An International Overview of Sea Dumped Chemical Weapons: The Way Forward. Conventional Weapons Convention Coalition. Retrieved from http://www.cwccoalition.org/wp-content/uploads/2010/12/longpaper.pdf
  5. Dario Matika, Slavko Barić. (2016). Maritime environmental security. Scientific Journal of Maritime Research, 30, 19–27. Retrieved from Downloads/357_16_1_Matika_Baric.pdf 6. Solovjov, I. I., Ctrilecz`, V. M. (2020). Problemni py`tannya vy`konannya robit z pidvodnogo rozminuvannya. Energozberezhennya ta promy`slova bezpeka: vy`kly`ky` ta perspekty`vy`. Tretya mizhnarodna naukovo-prakty`chna konferenciya. Ky`yiv: KPI, NNDI PBtaOP, 225–231.
  6. Möller, Gunnar. (2011). From a DC-3 to BOSB: The Road to a Breakthrough in Military Safety Measures Against the Risks of Historic, Explosive Ordnance. Marine Technology Society Journal, 45, 6, 26–34(9). doi: doi.org/10.4031/MTSJ.45.6.1
  7. IMAS 09.60:2014, IDT. Underwater Survey and Clearance of Explosive Ordnance (EO). Retrieved from https://reliefweb.int/sites/reliefweb.int/files/resources/www.mineactionstandards.org_filead min_MAS_documents_imas-international-standards_english_series09_IMAS_09.60_Underwater_Survey_and_Clearance_of_Explosive_Ordnance__EO_.pdf
  8. Standard Operating Procedures for Humanitarian Underwater Demining in South Eastern Europe. Retrieved from https://old.mineactionstandards.org/fileadmin/MAS/documents/referencespublications/Humanitarian-Underwater-Demining-in-South-Eastern-Europe.pdf
  9. Humanitarian Demining, Geneva International Centre for «A Guide to Survey and Clearance of Underwater Explosive Ordnance». (2016). Global CWD Repository. 1326. Retrieved from https://commons.lib.jmu.edu/cisr-globalcwd/1326
  10. Mareike, Kampmeier, Eefke, M. van der Lee, UweWichert, JensGreinert. (2020). Exploration of the munition dumpsite Kolberger Heide in Kiel Bay, Germany: Example for a standardised hydroacoustic and optic monitoring approach. Continental Shelf Research, 198, 104108. doi: 10.1016/j.csr.2020.104108
  11. Kocyuruba, V., Czыbuly`ya, S., Rыbalko, V. (2019). Obosnovany`e pry`meneny`ya metoda vozdushnoj razvedky` rajona y`ntensy`vnogo pry`meneny`ya my`nnogo oruzhy`ya. Zhurnal nauchnыx trudov. Socy`al`noe razvy`ty`e y` bezopasnost`, 9, 1, 60–68. doi: 10.33445 / sds.2019.9.1.5
  12. Sayle, Stephen, Windeyer, Tom, Charles, Michael, Conrod, Scott, Stephenson, Malcolm. (2009). Site Assessment and Risk Management Framework for Underwater Munitions. Marine Technology Society Journal, 43, 4, 41–51(11). doi: 10.4031/MTSJ.43.4.10
  13. The British Army – Commando Engineer Diver. UK Ministry of Defence. Retrieved 17 April 2017. Retrieved from https://www.army.mod.uk/who-we-are/corpsregiments-and-units/corps-of-royal-engineers/
  14. Huet, C., Mastroddi, F. (2016). Autonomy for underwater robots – a European perspective. Auton Robot 40, 1113–1118. doi: 10.1007/s10514-016-9605-x
  15. Nick, Cooper, Simon, Cooke, Kevin, Burgess (2017). Risky Business Dealing with Unexploded Ordnance (UXO) in the Marine Environment. Coasts, Marine Structures and Breakwaters. Published Online. doi: 10.1680/cmsb.63174.0157
  16. Mijajlovic, Veselin (2013). The Regional Center for Divers Training and Underwater Demining. The Journal of ERW and Mine Action, 17, 2, 13. Retrieved from https://commons.lib.jmu.edu/cisr-journal/vol17/iss2/13
  17. Camilli, Richard, Bingham, Brian S., Jakuba, Michael V., Duryea, Anthony N., LeBouvier, Rand, Dock, Matthew (2009). AUV Sensors for Real-Time Detection, Localization, Characterization, and Monitoring of Underwater Munitions. Marine Technology Society Journal, 43, 4, 76–84(9). doi: 10.4031/MTSJ.43.4.6
  18. Herbert, John. Risk Mitigation of Chemical Munitions in a Deep-Water Geohazard Assessment (2010). Marine Technology Society Journal, 44, 1, 86–96(11). doi: 10.4031/MTSJ.44.1.4
  19. Rancich, Tom (2011). Search and Recovery of Munitions by Divers. Marine Technology Society Journal, 45, 6, 75–79(5). doi: 10.4031/MTSJ.45.6.9
  20. Gry`czaenko, M. (2017). Razrabotka modely` y`nformacy`onnoj platformы dlya obezvrezhy`vany`ya potency`al`no opasnыx podvodnыx obъektov. Texnology`chesky`j audy`t y` proy`zvodstvennыe rezervы, 2 (2(40), 57–62. doi: 10.15587/2312-8372.2018.129208
  21. Olga Lucia Lopera Tellez, Alexander Borghgraef and Eric Mersch (August 30th 2017). The Special Case of Sea Mines, Mine Action – The Research Experience of the Royal Military Academy of Belgium, Charles Beumier, Damien Closson, Vinciane Lacroix, Nada Milisavljevic and Yann Yvinec, IntechOpen. doi: 10.5772/66994
  22. International Symposium Mine Action (2019). Slano, Croatia. Retrieved from http://www.ctro.hr/wp-content/uploads/2019/04/Knjiga-za-web-4-mb.pdf
  23. Olasunkanmi Habeeb Okunola (2019). Spatial analysis of disaster statistics in selected cities of Nigeria, International Journal of Emergency Management, 15, 4, 299–315. doi: 10.1504/IJEM.2019.104195
  24. Willem, Treurniet, Kees, Boersma, Peter, Groenewegen (2019). Configuring emergency response networks. International Journal of Emergency Management, 15, 4, 316–333. doi: 10.1504/IJEM.2019.104200
  25. Gibson, T. D., Scott, N. (2019). Views from the Frontline and Frontline methodology: critical reflection on theory and practice. Disaster Prevention and Management, 28, 1, 6–19. doi: 10.1108/DPM-07-2018-0214
  26. Garnier, E. (2019). Lessons learned from the past for a better resilience to contemporary risks. Disaster Prevention and Management, 28, 6, 786–803. doi: 10.1108/DPM-09-2019-0303
  27. Strelecz, V. M. (2001). Y`my`tacy`onnыj analy`z sy`stemы «chelovekmashy`na» kak metod эrgonomy`cheskoj ocenky` funkcy`ony`rovany`ya avary`jnыx sluzhb. Nauchno-texny`chesky`j zhurnal. Rady`oэlektrony`ka y` y`nformaty`ka, 3(16), 125–128.
  28. Afanas`yeva, O., Solovjov, I., Strilecz` V. (2021). Matematy`chna model` pidvodnogo rozminuvannya vy`buxonebezpechnogo predmetu. Informaciya ta bezpeka suspil`stva (Information and Public Safety), 2, 5. doi: 10.53029/2786-4529-2021-2-5
  29. Solovjov, I. I. Stecyuk, Ye. I., Strilecz` V. M. (2020). Zakonomirnosti rozxodu povitrya pid chas pidvodnogo rozminuvannya vodny`x akvatorij. Problemy` nadzvy`chajny`x sy`tuacij, 2(32), 132–144. doi: 10.5281/zenodo.4400181
  30. Voznesensky`j, V. A. Staty`sty`chesky`e metodы plany`rovany`ya эkspery`menta v texny`ko-эkonomy`chesky`x y`ssledovany`yax. M.: Fy`nansы y` staty`sty`ka, 1981, 263.
  31. Strelets V. M. (1998). The use of an expert method for direct assessment of the results of activities / V.M. Sagittarius // Information systems: collection of scientific papers. NANU, PANI, HVU, 2(10), 165–168.
  32. Beshelev, S. D., Gurvich, F. G. (1974). Mathematical and statistical methods of expert assessments. M.: Statistics, 264.
  33. Mitropolskii, A. K. (1971). Tekhnika statisticheskikh vychislenii. – Glavnaya redaktsiya fiziko-matematicheskoi literatury izdatelstva «Nauka», 576.
  34. Strelets, V. M. (2015). Raskrytie zakonomernostei vypolneniya osnovnykh operatsii boevogo razvertyvaniya pozharnykh avtomobilei // Sy`stemy` ozbroyennya i vijs`kova texnika. Kharkіv, 2(42), 173–175.
  35. Strelets, V. M. (2014). Razvitie metoda imitatsionnoi ergonomicheskoi otsenki funktsionirovaniya sistemy «spasatel – sredstva zashchity lichnogo sostava i likvidatsii avarii – chrezvychainaya situatsiya» // Vestnik Kokshetauskogo tekhnicheskogo instituta. Kokshetau, 4(16), 19–26.

 

 

Method of preventing emergencies due to fire through short-term fire forecasting

 

Boris Pospelov

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-0957-3839

 

Evgenіy Rybka

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-5396-5151

 

Mikhail Samoylov

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-8924-7944

 

Yuliia Bezuhla

National University of Civil Defence of Ukraine

http://orcid.org/0000-0003-4022-2807

 

Oleksandr Yashchenko

National University of Civil Defence of Ukraine

http://orcid.org/0000-0001-7129-389X

 

Yuliia Veretennikova

Kharkiv National University of Construction and Architecture

http://orcid.org/0000-0003-0245-704X

 

DOI: https://doi.org/10.52363/2524-0226-2021-34-21

 

Keywords: fire, dynamics, recurrence of state growing, dangerous factors, air environment, recurrent diagram

 

Аnnotation

 

A parametric model for predicting the current recurrence of the state of the airspace of premises in the conditions that are characteristic of real premises on the basis of the use of an arbitrary plural of dangerous factors of fire. The developed model depends on two parameters that are defined by a priori and affect the result of the recurrence of the recurrence of the conditions of the airspace of the premises. The new scientific result is determined by the theoretical substantiation of the developed model of prediction of recurrence of the growth of the airspaces of the airspace. The proposed model has two properties. The first one is associated with the possibility of use in theoretical studies of the detection of early inflammation of various materials in arbitrary conditions of modern premises. The second one is to practice the real measurements of hazardous fire factors of the airspace of premises. In accordance with the proposed model of prediction of current recurrence of the state of the air environment of premises in the fire of materials based on the measurement of an arbitrary set of dangerous fire factors, a control algorithm of the method of prevention of emergency situations as a result of fires in premises is developed. The control algorithm consists of six successive functionally linked blocks. The developed control algorithm allows us to offer an appropriate method for preventing emergencies as a result of fire in premises by predicting the recurrence of appliance of the airspace of the premises, which occurs on the basis of the current discrete measurement of an arbitrary plurality of dangerous fire factors. The procedure for application of the proposed method includes six successive functional procedural elements.

 

References

  1. Reproduced with permission from Fire Loss in the United States During 2020 (2021). National Fire Protection Association, 11. URL: www.nfpa.org
  2. Koshmarov, Yu. A., Puzach, S. V., Andreyev, V. V. (2012). Prognozirovaniye opasnykh faktorov pozhara v pomeshchenii. AGPS MCHS Rossii, 126.
  3. Otrosh, Yu., Semkiv, O., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708, 1, 012065.
  4. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise, 3/9 (93), 34–40.
  5. Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59.
  6. Ahn C. -S., Kim J. -Y. (2011). A study for a fire spread mechanism of residential buildings with numerical modeling. WIT Transactions on the Built Environment, 117, 185–196. doi: 10.2495/SAFE110171 7. Recurrence plots and their quantifications: expanding horizons. International Symposium on Recurrence Plots, Grenoble, France, 17-19 June 2015, 380.
  7. Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, А., Karpets, K., Bezuhla, Yu. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise, 6/10 (108), 14–22.
  8. Turcotte, D. L. (1997). Fractals and chaos in geology and geophysics. Cambridge university press.
  9. Poulsen, A., Jomaas, G. (2011). Experimental study on the burning behavior of pool fires in rooms with different wall linings. Fire Technology, 48 (2), 419–439.
  10. Zhang, D., Xue, W. (2010). Effect of heat radiation on combustion heat release rate of larch. Journal of West China Forestry Science, 39, 148.
  11. Ji, J., Yang, L., Fan, W. (2003). Experimental study on effects of burning behaviours of materials caused by external heat radiation. JCST, 9, 139.
  12. Peng, X., Liu, S., Lu, G. (2005). Experimental analysis on heat release rate of materials. Journal of Chongqing University, 28, 122.
  13. Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37.
  14. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5/10 (95), 25–30.
  15. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59.
  16. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self-adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5/9 (89), 43–48.
  17. Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6/10 (90), 50–56.
  18. Bendat, J. S., Piersol, A. G. (2010). Random data: analysis and measurement procedures. John Wiley & Sons.
  19. Shafi, I., Ahmad, J., Shah, S. I., Kashif, F. M. (2009). Techniques to Obtain Good Resolution and Concentrated Time-Frequency Distributions: A Review. EURASIP Journal on Advances in Signal Processing, 2009 (1).
  20. Singh, P. (2016). Time-frequency analysis via the fourier representation. HAL, 1–7.
  21. Pretrel, H., Querre, P., Forestier, M. (2005). Experimental Study Of Burning Rate Behaviour In Confined And Ventilated Fire Compartments. Fire Safety Science, 8, 1217–1228.
  22. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 50–55.
  23. Stankovic, L., Dakovic, M., Thayaparan, T. (2014). Time-frequency signal analysis. Kindle edition, Amazon, 655.
  24. Avargel, Y., Cohen, I. (2010). Modeling and Identification of Nonlinear Sys- tems in the Short-Time Fourier Transform Domain. IEEE Transactions on Signal Processing, 58 (1), 291–304.
  25. Giv, H. H. (2013). Directional short-time Fourier transform. Journal of Mathematical Analysis and Applications, 399 (1), 100–107.
  26. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequencytemporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2/10 (92), 44–49.
  27. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analys is of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European JournalofEnterprise Technologies, 5/10 (95), 25–30.
  28. Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1/10 (97), 29–35.
  29. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko R., Danchenko, Yu. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4/10 (100), 22–29.
  30. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O., Semenyshyna, I., Kapitan, R., Promska, A., Horbov, O. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6/4 (102), 39–46.
  31. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I., Butenko, T., Bezuhla, Yu., Karpets, K., Kochanov, E. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise, 2/10 (110), 43–50.

 

 

Information and analytical support of the process of prevention ofemergencies at the facilities of the chemical industry

 

Tаisiy Vovchuk

National University of Civil Defence of Ukraine

http://orcid.org/0000-0001-7962-1077

 

Roman Shevchenko

National University of Civil Defence of Ukraine

https://orcid.org/0000-0001-9634-6943

 

DOI: https://doi.org/10.52363/2524-0226-2021-34-19

 

Keywords: emergency, information technology, QR-coding, warnings, objects of chemical industry

 

Аnnotation

The paper considers the process of forming the main approaches to the development of information and analytical support of the process of prevention of emergencies of man-made nature at the chemical industry in conditions of excessive man-made load, taking into account modern capabilities of QR-coding technologies. Analysis of the current state of the issue convincingly proves that given Ukraine's orientation to European standards in the field of civil protection, there is a need to generalize and implement international experience in creating and operating management systems in emergencies, based on modern information and communication technologies, especially emergencies of technogenic character on objects of the chemical industry in the conditions of excessive technogenic loading. The conditions of integration of existing domestic approaches to the prevention of man-made emergencies at chemical facilities in the conditions of excessive man-caused load in the information-analytical space of the European Community, which allowed to form the basis of the methodological apparatus for developing information technology for man-made emergencies chemical industry projects in the conditions of excessive technogenic loading, taking into account modern possibilities of QR - coding and to define group of boundary conditions which are formed as corresponding restrictions of derivative consequences of an emergency situation. The information technology of analytical support of man-made emergency management at chemical industry facilities in the conditions of excessive man-caused load has been developed, which allows to introduce innovative approaches to emergency management into the daily activities of practical units of SES of different hierarchical level of subordination. The results obtained in this work allow us to further develop a number of practical recommendations, which relate primarily to the harmonization of domestic approaches and practices to the requirements of the European Community. Such harmonization should be based on the principles of comprehensive assistance to the population in the event of emergencies that threaten health, life, property or the environment, other dangerous and catastrophic events.

 

References

  1. Mohan Rao, P. V. J. (2013). Industrial accidents impact on environment. Global Journal of Engineering, Design and Technology, 2(4), 41–42.
  2. Togashi, E., Baum, J. D., Mestreau, E., Löhne, R., Sunshine, D. (2012). Numerical simulation of long duration blast wave evolution inconfined facilities. Shock Waves, 20, 409–424. doi: 10.1007/s00193-010-0278-7
  3. Сanada’s most shameful environmental secret must not remain hidden. Retrieved from https://www.theguardian.com/commentisfree/2017/nov/14/ canadasshameful-environmental-secret-tar-sands-tailings-ponds
  4. Mosa, A., Duffin, J. (2017). The interwoven history of mercury poisoning in Ontario and Japan. CMAJ: Canadian Medical Association journal/journal de l’Association medicale canadienne, 189(5), 213–215. Retrieved from https://doi.org/10.1503/cmaj.160943
  5. Third death in sewage treatment plant mishap at Delhi hotel. Retrieved from https://indianexpress.com/article/cities/delhi/third-death-in-sewage-treatment-plantmishap-at-hotel-5167360
  6. NHRC seeks report on death of 5 people at sewage treatment plant in Delhi. Retrieved from https://www.indiatoday.in/mail-today/story/nhrc-seeks-report-on-death-of5-people-at-sewage-treatment-plant-in-delhi-1337309-2018-09-11s
  7. Yak vykorystovuvaty QR-code? Retrieved from http://www.mobiticket.ru/index.php?page=253
  8. Zasadna, Kh. O. (2014). QR-koduvannia ta alternatyvni tekhnolohii. Finansovyi prostir, 3(15), 103–108.
  9. Butyrska, I. V. (2015). Tekhnolohiia QR-kodu yak instrument pidvyshchennia efektyvnosti funktsionuvannia servisnykh system. Matematychni metody, modeli ta informatsiini tekhnolohii v ekonomitsi, 1(57), 165–171.
  10. QR kod v Ukrayne. Retrieved from http://umg.ua/news/49-qr-kod-vukraine.html
  11. Emergency Workers Scan QR Codes to Quickly Access Health Information. Retrieved from https://www.pcworld.com/article/256550/emergency_workers _scan_qr_codes_to_quickly_access_health_information.html
  12. SOS QR. Retrieved from https://www.nhs.uk/apps-library/sos-qr
  13. Mercedes-Benz Rescue Assist. Retrieved from https://www.mercedesbenzcary. com/rescue-assist-video.html
  14. Evaluation and implementation of QR Code Identity Tag system for Healthcare in Turkey. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005258