Improvement of supply of gel-forming compositions by extinguishing unit with elongated crankshaft

 

Kostiantyn Ostapov

National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-1275-741X

 

Iurii Senchykhin

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-5983-2747

 

Vadim Avetisyan

National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-5986-2794

 

Ihor Gritsina

National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-2581-1614

 

DOI: https://doi.org/10.52363/2524-0226-2022-35-7

 

Keywords: gel-forming compositions, elongated barrel, extinguishing unit, finely sprayed jet, model hearth

 

Аnnotation

 

This new installation allows extinguishing with gel-forming compounds from a distance of 3–5 m to the center of the fire, ensuring the safety of firefighters. A full-scale sample of the original two-knee sprayer of the knapsack installation was designed, manufactured and tested. Experimental studies have shown that its use due to compactness in the folded state and ease of deployment in the working position, provides ease of transportation and efficiency of operation in rapidly changing fire conditions, especially in high-rise buildings. With the supply of gel-forming compositions in finely divided form, a reduction in their cost for extinguishing the hearth is achieved, compared to previously proposed technical solutions, 1,5 times. To determine the effective value of the dispersion and intensity of spraying of gel-forming compositions in mathematical models of the cost of extinguishing the model hearth and the time of its extinguishing, polynomials of the second degree are used. Unknown coefficients are determined by the standard least squares method. As a result, rational values of droplet diameter (1 mm) and feed intensity (0,6 l/s) of gel-forming compositions were determined, which provided the technical optimum of their use. Thus, it was found that the parameters of extinguishing the model hearth 1A finely sprayed gelling compositions correspond to a total consumption of 2,5 kg, which is 3,5 times less than water.

 

References

  1. Brushlinsky, N. N., Ahrens, M., Sokolov, S. S., Wagner, P. (2017). World Fire Statistics. International Association of Fireand Rescue Services, 22, 56.
  2. Norman, J. (2012). Fire Officers Handbook of Tactics. South Sheridan Road Tulsa, Oklahoma, 311.
  3. Dubinin, D., Korytchenko, К., Lisnyak, А., Hrytsyna, I., Trigub, V. (2018). Improving the installatio for fireex tinguishing with finely-dispersed water. Eastern-European Journa lof Enterprise Technologies, 2(10 (92)), 38–43. doi: 10.15587/1729-4061.2018.127865
  4. Korytchenko, К., Sakun, О., Dubinin, D., Khilko, Y., Slepuzhnikov, E., Nikorchuk, A., Tsebriuk, I. (2018). Experimentalin vestigation of the fire-extinguishingsystemwith a gas-detonation charge fo rflui dacceleration. Eastern-European Journal of Enterprise Technologies, 3/5 (93), 47–54. doi: 10.15587/1729-4061.2018.134193
  5. Chow, W. K., Li, Y. F. (2013). A review on study ingex tinguis hing room fires by watermist. Journal of Applied Fire Science, 11(4), 367–403.
  6. Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: 10.15587/1729-4061.2017.117789
  7. Galla, S., Stefanicky, B., Majlingova, A. (2017). Experimental comparison of the fire extinguishing properties of the firesorb gel and water. 7th International Multidisciplinary Scientific GeoConference SGEM, 17(51), 439–446. doi: 10.5593/ sgem2017/51/S20.058
  8. Stefanick, B., Poledňák, P., Rantúch, P., Balog, K. (2016). Assessment of wood fire protection effectiveness using blocking gel Firesorb. Production Management and Engineering Sciences, 4, 535–538. http://repositsc.nuczu.edu.ua/bitstream/123456789/10390/1/%D0%9E%D1%81%D1%82%D0%B0%D0%BF%D0%BE%D0%B2.pdf
  9. Saveliev, D, Khrystych, O, Kirieiev, O, Chyrkina, M. (2018). Binary fire-extinguishing systems with separate application as the most relevant systems of forest fire suppression. European Journal of Technical and Natural Science, 1, 31–36.
  10. Savchenko A. V., Ostroverh O. A., Hmyirov I. M., Kovalevskaya T. M. (2017). Otsenochnyieis pyitaniya tehnologiiis polzov an iyageleobra zuyuschih sistem dlyazas chityirezer vuarov hraneniy an ftepro duktovottep lovogovoz deys tviyapozhara. Problemy ipozharnoy bezopasnosti, 41, 154–161. http://nbuv.gov.ua/UJRN/ Ppb_2017_41_28.
  11. Kireev, A. A. (2011). Issle dovanie ognetus hashhego dejstvijagele obrazujus hihsostavov namodel’nyhochagah pozharov klassa A iz DVP i DSP Problemy pozharnoj bezopasnosti, 30, 83–88.
  12. Savchenko, A. V., Ostroverh, O. A., Semkiv, O. M., Holodnyj, A. S. (2014). Rezul’taty kompleks nogois sledovanija ognetushash hejjeffektiv nostigele obrazujush hih sistem dljatushenija pozharov v zhilyhz danijah. Problemy pozharnoj bezopasnosti, 35, 188–193. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Ppb_2014_35_31
  13. Abramov, Ju. A., Kireev, A. A. (2015). Geleobrazujush hieognetus hashhie i ognezash hitnyesredstvapovyshennojjeffektivnostiprimenitel'no k pozharamklassa A. NUCZU, 254.
  14. Ustanovka dystantsiin ohohasinnia pozhezhhe leutvoriuiuchymys polukamy: pat.118440 Ukraina. №201701600; zaiavl. 20.02.2017; opubl. 10.08.2017, Byul. 15.
  15. Ostapov, K. M., Senchykhyn, Yu. N., Sirovoi, V. V. (2017). Osobennosty prymenenyia opitnoi ustanovky AUTHOS-M. Naukovyi visnyk budivnytstva 88, 276–279, URL: http://repositsc.nuczu.edu.ua/handle/123456789/5807

 

Forecasting the smallest super molecular formations for alkanes of normal and isomeric structure

 

DmytroTregubov

National University of Civil Defence of Ukraine

http://orcid.org/0000-0003-1821-822X

 

Andrei Sharshanov

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-9115-3453

 

Dmitry Sokolov

National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-7772-6577

 

Flora Tregubova

National University of Civil Defence of Ukraine

https://orcid.org/0000-0003-2497-7396

 

DOI: https://doi.org/10.52363/2524-0226-2022-35-5

 

Keywords: cluster, substance, melting point, "even-odd" molecules, alkanes, normal and isomeric structure, calculation

 

Аnnotation

The problem of melting points adequate prediction (tmp) hydrocarbons as a base temperature for many practical calculations, based on modeling their supramolecular structure, is considered. Oscillatory dependences of tmp(nС) in homologous series of normal and isomeric structure alkanes are analyzed. A review of methods for taking into account in the parameters calculation of substance properties of the "evenness-oddness" effect of molecules by carbon atoms number for alkanes is performed. The substance smallest structural unit in the form of a cluster with a certain coordination number is considered. It is shown that dependences of tmp on the molecular weight of the cluster for hydrocarbons and metals differ significantly. A conclusion is made about the determining influence of the cluster structure on tmp (linear structure for hydrocarbons and in the form of a crystal lattice for metals). 3 calculation methods of the cluster length on the values basis of the molecule lav and coordination number are considered. It is found that calculations based on one molecule parameters give insufficient correlation for tmp alkanes – 0,92, after adapting the method to determine the cluster length reached R2=0,984, the calculation of the equivalent cluster length increases R2 to 0,993. It is shown that calculation of tmp should take into account the equivalent length nСeq and the molecular weight M of the cluster. The complex parameter "melting ease" as nСeqM0,2 and the corresponding analytical dependence for tmp with R2=0,99 for 90 compounds of series of hydrocarbons with the normal and isomeric structure were developed. The presence and determining influence of the substance cluster structure on tmp is proved indirectly. The predicting possibility for tmp(nС) of hydrocarbons with the oscillation adequate reflection for the tmp(nС) dependence is achieved.

 

References

  1. Tregubov, D., Tarakhno, О., Sokolov, D., Trehubova, F. (2021). The identification of hydrocarbons cluster structure by melting point. Problems of Emergency Situations, 34, 94–109. doi:10.52363/2524-0226-2021-34-7
  2. Boese, R., Weiss, H.-Ch, Bläser, D. (1999). The Melting Point Alternation in the Short-Chain n-Alkanes: Single-Crystal X-Ray Analyses of Propane at 30 K and of n-Butane to n-Nonane at 90 K. Angewandte сhemie, 38(7), 988– doi:10.1002/(SICI)1521-3773(19990401)38:7<988::AID-ANIE988>3.0.CO;2-0
  3. Atume, E. T. (2020). Absolute Prediction of the Melting and Freezing Points of Saturated Hydrocarbons Using Their Molar Masses and Atume’s Series. Advanced Journal of Chemistry, 3(2), 122– doi:10.33945/SAMI/AJCA.2020.2.2
  4. Li, H., Higashi, H., Tamura, K. (2006). Estimation of boiling and melting points of light, heavy and complex hydrocarbons by means of a modified group vector space method. Fluid Phase Equilibria, 239(2), 213–222. doi:10.1016/j.fluid.2005.11.004
  5. Črepnjak, М., Tratnik, N., Pleteršek, Р. (2018). Predicting melting points of hydrocarbons by the Graovac-Pisanski index. Fullerenes, Nanotubes and Carbon Nanostructures, 26 (5), 239– doi:10.1080/1536383X.2017.1386657
  6. Thalladi, V. and Boese, R. (2000). Why is the melting point of propane the lowest among n-alkanes? New J. Chem., 24, 579– doi:10.1039/B004283H
  7. Doroshenko, I. Yu. (2017). Spectroscopic study of cluster structure of n-hexanol trapped in an argon matrix. Low Temperature Physics, 3(6), 919–926. doi:1063/1.4985983
  8. Gun’ko, V., Nasiri, R., Sazhin, S. (2014). A study of the evaporation and condensation of n-alkane clusters and nanodroplets using quantum chemical methods. Scientific Reports. Fluid Phase Equilibria, 366, 99–107. doi:10.1016/j.fluid.2014.01.010
  9. Yang, K., Cai, Zh., Jaiswal, A., Tyagi, M., Moore, J.S., Zhang, Y. (2016). Dynamic Odd–Even Effect in Liquid n-Alkanes near Their Melting Points. Angewandte Chemie, 55(45), 14090–14095. doi:10.1002/anie.201607316
  10. Tarakhno, О. V., Tregubov, D. G. et al. (2020). Osnovni polozhennya protsesu horinnya. Vynyknennya protsesu horinnya. Kharkiv, NUTSZU, 408. Retrieved from: http://repositsc.nuczu.edu.ua/handle/123456789/11382
  11. Litinskii, G. B. (2008). Statistical thermodynamics of mixtures of polar liquids in the model of hindered rotation of molecules. J.Ph.Ch, 82(9), 1475–1479. doi:10.1134/S0036024408090124
  12. Tregubov, D. G., Tarakhno, О. V., Kyreev, O. O. (2018). Influence of cluster structure of liquids technical mixtures on the value of characteristic temperatures. Problems of Emergency Situations, 28, 99–110. doi:10.5281/zenodo.2598054
  13. Laguna, A. (2008). Modern Supramolecular Gold Chemistry: Gold Metal Interactions and Applications. Weinheim, WileyVCH, 505. doi:10.1002/9783527623778
  14. Tregubov, D., Gonar, S. (2015). Sproshchennya ta pidvyshchennya tochnosti rozrakhunku temperatury samospalakhuvuannya spyrtiv. Naukovyy visnyk budivnytstva, 80, 278–281. Retrieved from: http://repositsc.nuczu.edu.ua/handle/123456789/3229
  15. Hydrocarbons – Physical Data. Engineering ToolBox. (2022, 24.04). Retrieved from: https://www.engineeringtoolbox.com/hydrocarbon-boiling-melting-flash-autoignition-point-density-gravity-molweight-d_1966.html
  16. Novikov, O. I., Petrukhin, S. Yu. (2017). Orhanichna khimiya. Kharkiv, FVP NTU KhPI, URL: https://core.ac.uk/download/pdf/196573292.pdf

 

Spectral properties of the dynamics of dangerous environmental factors during indoor fires

 

Boris Pospelov

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-0957-3839

 

Evgeniy Rybka

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-5396-5151

 

Mikhail Samoilov

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-8924-7944

 

Ruslan Meleshchenko

National University of Civil Defence of Ukraine

http://orcid.org/0000-0001-5411-2030

 

Yuliia Bezuhla

National University of Civil Defence of Ukraine

http://orcid.org/0000-0003-4022-2807

 

Oleksandr Yashchenko

National University of Civil Defence of Ukraine

http://orcid.org/0000-0001-7129-389X

 

DOI: https://doi.org/10.52363/2524-0226-2022-35-3

 

Keywords: ignition of materials, gaseous indoor environment, amplitude instantaneous spectrum, phase instantaneous spectrum

 

Аnnotation

The spectral density and amplitude and phase spectra of the dynamics of the main dangerous factors of the gas environment during the ignition of test materials in a laboratory chamber were investigated. The object of the study is the spectral properties of the dynamics of dangerous factors of the gas environment during the ignition of materials. The main subject is the spectral density and the direct Fourier transform of discrete measurements of hazardous parameters of the gas environment at fixed intervals before and after the ignition of the material. The direct discrete Fourier transform allows determining the instantaneous amplitude and phase spectra for selected fixed time intervals. This makes it possible to study the peculiarities of instantaneous amplitudes and phases of harmonic components in the spectrum of non-stationary dynamics of dangerous parameters of the gas environment. It was established that the nature of the spectral density and amplitude spectrum is uninformative from the point of view of fire detection. It was established that the main contribution to the density and amplitude spectrum of the dynamics of the investigated hazardous parameters of the gas environment in the chamber is made by frequency components in the range of 0–0,2 Hz. At the same time, the contribution to the spectral density and amplitude spectrum of frequency components above 0,2 Hz decreases significantly with increasing frequency. It was found that the use of the direct Fourier transformation of the measured data and the use of the phase spectrum for the high-frequency components of the dynamics of the hazardous parameters of the gas environment exceeding 0,2 Hz are more informative and sensitive from the point of view of detecting fires. It was established that the nature of the phase spread for the specified frequency components in the phase spectrum depends on the type of ignition material. By the nature of the phase spread of the frequency components, it is possible not only to detect ignition, but also to recognize the type of ignition material.

 

References

  1. Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. EEJET, 6/10(90), 57–64. doi: 10.15587/1729-4061.2017.118213
  2. Tan, P., Steinbach, M., Kumar, V. (2005). Introduction to Data Mining. Addison Wesley, 864. URL: https://www-users.cse.umn.edu/~kumar001/dmbook/ php
  3. Semko, A. N., Beskrovnaya, M. V., Vinogradov, S. A., Hritsina, I. N., Yagudina, N. I. (2014). The usage of highspeed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52(3), 655– URL: https://bibliotekanauki.pl/articles/279295
  4. Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.101985
  5. Mygalenko, K., Nuyanzin, V., Zemlianskyi, A., Dominik, A., Pozdieiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1/10(91), 31–37. doi: 10.15587/1729-4061.2018.121727
  6. Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2018). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64, 4, 186–195. URL: http://29yjmo6.257.cz/bitstream/123456789/8734/1/document.pdf
  7. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finelydispersed water. Easten-European Journal of Enterprise Technologies, 2/92(10), 38–43. doi: 10.15587/1729-4061.2018.127865
  8. Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. URL: https://doi.org/10.1051/e3sconf/20186000003
  9. (2020). Reproduced with permission from fire loss in the United States during 2019. National Fire Protection Association, 11. URL: www.nfpa.org
  10. Otrosh, Yu., Semkiv, O., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708, 1, 012065. URL: https://iopscience.iop.org/article/10.1088/1757-899X/708/1/012065/pdf
  11. Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77. URL: http://repositsc.nuczu.edu.ua/handle/123456789/6849
  12. Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy khimii i khimicheskoi tekhnologii, 1, 92–99. URL: http://vhht.dp.ua/wp-content/uploads/pdf/2019/1/ pdf
  13. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R., Bezuhla, Yu., Hrachova, I., Nesterenko, R., Shumilova, А. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. EEJET, 4/10 (106), 37–44. doi: 10.15587/1729-4061.2020.210059
  14. Sadkovyi, V., Rybka, E., Otrosh, Yu. and others. (2021). Fire resistance of reinforced concrete and steel structures. PC TECHNOLOGY CENTER, 180. doi: 10.15587/978-617-7319-43-5
  15. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I., Butenko, T., Bezuhla, Yu., Karpets, K., Kochanov, E. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise, 2/10 (110), 43–50. doi: 10.15587/1729-4061.2021.226692
  16. Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. URL: https://doi.org/10.15587/1729-4061.2017.96694
  17. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: 10.15587/1729-4061.2017.108448
  18. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5/9 (89), 43–48. doi: 10.15587/1729-4061.2017.110092
  19. Caixia, C., Fuchun, S., Xinquan, Z. (2011). One Fire Detection Method Using Neural Networks. Tsinghua Science and Technology, 16(1), 31–35. doi: 10.1016/S1007-0214(11)70005-0
  20. Ding, Q., Peng, Z., Liu, T., Tong, Q. (2014). Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory. Algorithms, 7, 523–537. URL: https://doi.org/10.3390/a7040523
  21. BS EN 54-30:2015 Fire detection and fire alarm systems. Part 30: Multi-sensor fire detectors. Point detectors using a combination of carbon monoxide and heat sensors.
  22. BS EN 54-31:2014 Fire detection and fire alarm system. – Part 31: Multi-sensor fire detectors. Point detectors using a combination of smoke, carbon monoxide and optionally heat sensors.
  23. ISO 7240-8:2014 Fire detection and alarm systems – Part 8: Point-type fire detectors using a carbon monoxide sensor in combination with a heat sensor.
  24. Aspey, R. A., Brazier, K. J., Spencer, J. W. (2005). Multiwavelength sensing of smoke using a polychromatic LED: Mie extinction characterization using HLS analysis. IEEE Sens. J., 5, 1050–1056. Chen, S. -J., Hovde, D. C., Peterson, K. A., Marshall, A. W. (2007). Fire detection using smoke and gas sensors. Fire Safety J., 42, 507–515.
  25. Shi, M., Bermak, A., Chandrasekaran, S., Amira, A., Brahim-Belhouari, S. (2008). A committee machine gas identification system based on dynamically reconfigurable FPGA. IEEE Sens. J., 8, 403–414. URL: http://dx.doi.org/10.1109/JSEN.2008.917124
  26. Skinner, A. J., Lambert, M. F. (2006). Using smart sensor strings for continuous monitoring of temperature stratification in large water bodies. IEEE Sensors J., 6, 1473–1481. URL: http://dx.doi.org/10.1109/JSEN.2006.881373
  27. Cheon, J., Lee, J., Lee, I., Chae, Y., Yoo, Y., Han, G. (2009). A single-chip CMOS smoke and temperature sensor for an intelligent fire detector. IEEE Sens. J., 9, 914–920. URL: https://doi.org/10.1109/JSEN.2009.2024703
  28. Wu, Y., Harada, T. (2004). Study on the Burning Behaviour of Plantation Wood. Scientia Silvae Sinicae, 40, 131. doi: 10.11707/j.1001-7488.20040223
  29. Zhang, D., Xue, W. (2010). Effect of Heat Radiation on Combustion Heat Release Rate of Larch. Journal of West China Forestry Science, 39, 148. URL: https://doi.org/10.1016/j.proeng.2013.08.133
  30. Ji, J., Yang, L., Fan, W. (2003). Experimental Study on Effects of Burning Behaviours of Materials Caused by External Heat Radiation. Journal of Combustion Science and Technology, 9, 139. doi: 10.15587/1729-4061.2018.122419
  31. Peng, X., Liu, S., Lu, G. (2005). Experimental Analysis on Heat Release Rate of Materials. Journal of Chongqing University, 28, 122. doi: 10.1016/j.proeng.2013.08.133
  32. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5/10(95), 25–30. URL: http://repositsc.nuczu.edu.ua/handle/123456789/7483
  33. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise, 3/9(93), 34–40. doi:10.15587/1729-4061.2018.133127
  34. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T., Yashchenko, O., Bezuhla, Yu., Karpets, K., Vasylchenko, R. (2021). Short-term fire forecast based on air state gain recurrency and zero-order Brown model. Eastern-European Journal of Enterprise, 3/10(111), 27–33. doi: 10.15587/1729-4061.2021.233606
  35. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Yu. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4/10(100), 22–29. URL: https://doi.org/10.15587/1729-4061.2019.176579
  36. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K. (2016). Fire Dynamics Simulator Technical Reference Guide. National Institute of Standards and Technology, 3, 6th ed. URL: https://www.fse-italia.eu/PDF/ManualiFDS/FDS_Validation_Guide.pdf
  37. Floyd, J., Forney, G., Hostikka, S., Korhonen, T., McDermott, R., McGrattan, K. (2013). Fire Dynamics Simulator (Version 6) User’s Guide. National Institute of Standard and Technology, 1, 1st ed. URL: https://tsapps.nist.gov/publication/ cfm?pub_id=913619
  38. Polstyankin, R. M., Pospelov, B. B. (2015). Stokhastychni modeli nebezpechnykh faktoriv ta parametriv vohnyshcha v prymishchennyakh. Problemy pozhezhnoyi bezpeky, 38, 130–135.
  39. Heskestad, G., Newman, J. S. (1992). Fire Detection Using Cross-Correlations of Sensor Signals. Fire Safety J., 18, 4, 355–374. URL: https://doi.org/10.15587/1729-4061.2017.117789
  40. Gottuk, D. T., Wright, M. T., Wong, J. T., Pham, H. V., Rose-Pehrsson, S. L., Hart, S., Hammond, M., Williams, F. W., Tatem, P. A., Street, T. T. (2002). Prototype Early Warning Fire Detection Systems: Test Series 4 Results. NRL/MR/6180–02–8602, Naval Research Laboratory, February 15. URL: https://apps.dtic.mil/sti/pdfs/ pdf
  41. Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6/10(90), 50–56. URL: https://doi.org/10.15587/1729-4061.2017.117789

 

Experimental verification of the hazardous gas distribution model

 

Maksim Kustov

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-6960-6399

 

Andrii Melnychenko

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-7229-6926

 

DOI: https://doi.org/10.52363/2524-0226-2022-35-4

 

Keywords: gas sorption, experimental chamber, dispersed flow, concentration distribution, deposition intensity, model adequacy, Fisher's test

 

Аnnotation

An experimental verification of the adequacy of the theoretical model of the distribution of hazardous gases in the air stream during its intensive deposition by dispersed jets is carried out. Comparative analysis of the results of the experiments is embedded in the confidence interval calculated by Fisher's test with a reliability of 0,95. This testifies to the reliability of previously developed mathematical models of sorption of hazardous gases. The results of experiments confirmed the high intensity of sorption of ammonia by water flow and showed that the use of water curtains can significantly reduce the size of atmospheric damage by hazardous gases. To conduct reliable experimental research and model the conditions of deposition of hazardous gases in the path of air flow, an experimental chamber for the study of sorption processes was developed and created. The developed experimental chamber and research methods provide for safety when working with hazardous gaseous substances. The design of the chamber body in the form of an elongated cylinder with a network of gas analyzers allows you to measure the dynamics of the spatial distribution of gases at different flow intensities. The method of the experiment involves three main variable parameters – air flow rate, intensity and dispersion of liquid flow and additional variable parameters determined by the physicochemical nature of sorption processes – ambient temperature and pressure, chemical composition of the liquid. The use of the developed experimental chamber in research will allow to measure the intensity of sorption processes of gaseous substances by the flow of dispersed liquids, liquid mixtures and solutions. The efficiency of practical use of the method of forecasting the intensity of emergency response with the emission of hazardous gases was tested.

 

References

  1. Pshinko, O., Biliaiev, M. M., Gunko, O. Y. (2009). Localization of the air pollution zone in case of liquidation of an accident with chemically hazardous cargo. Science and Transport Progress, 27, 143–148. doi: 10.15802/stp2009/14261
  2. Kustov, M., Kalugin, V., Hristich, O., Hapon, Y. (2021). Recovery method for emergency situations with hazardous substances emission into the atmosphere. International Journal of Safety and Security Engineering, 11(4), 419–426. doi:18280/ijsse.110415
  3. Talhofer, V., Hošková-Mayerová, Š. (2019). Method of Selecting a Decontamination Site Deployment for Chemical Accident Consequences Elimination: Application of Multi-Criterial Analysis. ISPRS International Journal of Geo-Information, 8(4), 171. doi: 3390/ijgi8040171
  4. Tatarinov, V., Prus, U. V., Kirsanov, A. A. (2019). Decision support software for chemical accident elimination management. AIP Conference Proceedings, 2195, 020076. doi: 10.1063/1.5140176
  5. Martínez-García, M., Zhang, Y., Suzuki, K., Zhang, Y. D. (2021). Deep Recurrent Entropy Adaptive Model for System Reliability Monitoring. IEEE Transactions on Industrial Informatics, 17(2), 839‑848. doi: 1109/TII.2020.3007152
  6. Khan, F., Rathnayaka, S., Ahmed, S. (2015). Methods and models in process safety and risk management: Past, present and future. Process Safety and Environmental Protection, 98, 116–147. doi: 1016/j.psep.2015.07.005
  7. Carol, S. (2009). WISER and REMM: Resources for Disaster Response. Journal of Electronic Resources in Medical Libraries, 6, 253‑259. doi: 1080/15424060903167393
  8. Polorecka, M., Kubas, J., Danihelka, P., Petrlova, K., Repkova Stofkova, K., Buganova, K. (2021). Use of Software on Modeling Hazardous Substance Release as a Support Tool for Crisis Management. Sustainability, 13, 438‑453. doi: 10.3390/su13010438
  9. Leelossy, A., Molnar, F., Izsak, F., Havasi, A., Lagzi, I., Meszaros, R. (2014). Dispersion modeling of air pollutants in the atmosphere: a review. Central European Journal of Geosciences, 6, 257‑278. doi: 10.2478/s13533-012-0188-6
  10. Yan, X., Zhou, Y., Diao, H., Gu, H., Li, Y. (2020). Development of mathematical model for aerosol deposition under jet condition. Annals of Nuclear Energy, 142, 107394. doi: 10.1016/j.anucene.2020.107394
  11. Elperin, T., Fominykh, A., Krasovitov, B., Vikhansky, A. (2011). Effect of rain scavenging on altitudinal distribution of soluble gaseous pollutants in the atmosphere. Atmospheric Environment, 45(14), 2427–2433. doi: 10.1016/j.atmosenv.2011.02.008
  12. Kustov, M., Melnychenko, A., Taraduda, D., Korogodska, A. (2021). Research of the Chlorine Sorption Processes when its Deposition by Water Aerosol. In Materials Science Forum, 1038, 361‑373. doi: 10.4028/www.scientific.net/MSF.1038.361
  13. Gautam, S., Liu, T., Cole, D. (2019). Sorption, Structure and Dynamics of CO2and Ethane in Silicalite at High Pressure: A Combined Monte Carlo and Molecular Dynamics Simulation Study. Molecules, 24(1), 99. doi: 10.3390/molecules24010099
  14. Hua, A. K., Lakey, P. S., Shiraiwa, M. (2022). Multiphase Kinetic Multilayer Model Interfaces for Simulating Surface and Bulk Chemistry for Environmental and Atmospheric Chemistry Teaching. Journal of Chemical Education, 99(3), 1246‑1254. doi: 10.1021/acs.jchemed.1c00931
  15. Kustov, M., Basmanov, O., Tarasenko, O., Melnichenko, A. (2021). Predicting the extent of chemical damage under the conditions of deposition of hazardous substances. Scientific Journal Problems of Emergency Situations, 33, 72‑83. doi: 10.52363/2524-0226-2021-33-6
  16. Melnichenko, A., Kustov, M., Basmanov, O., Tarasenko, O., Bogatov, O., Kravtsov, M., Petrova, O., Pidpala, T., Karatieieva, O., Shevchuk, N. (2022). Devising a procedure to forecast the level of chemical damage to the atmosphere during active deposition of dangerous gases. Eastern-European Journal of Enterprise Technologies, 1(10(115)), 31–40. doi: 10.15587/1729-4061.2022.251675
  17. Bell, K. J. (2004). Heat Exchanger Design for the Process Industries. ASME. Journal Heat Transfer, 126(6), 877–885. doi: 10.1115/1.1833366
  18. Tang, L., Cao, F., Li, Y., Bao, J., Ren, Z. (2016). High performance mid-temperature selective absorber based on titanium oxides cermet deposited by direct current reactive sputtering of a single titanium target. Journal of Applied Physics, 119, 045102. doi: 10.1063/1.4940386
  19. Merentsov, N. A., Golovanchikov, A. B., Topilin, M. V., Persidskiy, A. V., Tezikov, D. A. (2019). Mass transfer apparatus for a wide range of environmental processes. IOP Publishing. Journal of Physics: Conference Series, 1399, 055028. doi: 1088/1742-6596/1399/5/055028
  20. Freeman, L., Ryan, F., Kensler, J., Dickinson, R., Vining, G. (2013). A Tutorial on the Planning of Experiments. Quality Engineering, 25(4), 315‑332. doi: 10.1080/08982112.2013.817013

 

Сalculation of fire resistance of fire protected reinforced concrete structures

 

Andrii Kovalov

National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-6525-7558

 

Viktor Poklonskyi

National University of Civil Defence of Ukraine

http://orcid.org/0000-0001-7801-7118

 

Yurii Otrosh

National University of Civil Defence of Ukraine

http://orcid.org/0000-0003-0698-2888

 

Vitalii Tоmеnkо

National University of Civil Defence of Ukraine

http://orcid.org/0000-0001-7139-9141

 

Serhii Yurchenko

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-2775-238X

 

DOI: https://doi.org/10.52363/2524-0226-2022-35-2

 

Keywords: fire resistance, reinforced concrete structures, thermal engineering calculation, numerical modeling, fire protection, fire protection coating, ANSYS

 

Аnnotation

A finite-element model was developed for thermal engineering calculation of a fire-resistant multi-cavity reinforced concrete floor in the ANSYS software complex. With the help of the developed model, a thermal engineering calculation of a fire-resistant reinforced concrete multi-hollow floor slab was carried out, the essence of which was to solve the problem of non-stationary thermal conductivity and was reduced to determining the temperature of the concrete of the reinforced concrete floor at any point of the cross section at a given time (including at the place of installation of the fittings).A comparison of the results of numerical modeling with the results of an experimental study of fire resistance was carried out. An approach is proposed that allows taking into account all types of heat exchange by specifying cavities as a solid body with an equivalent coefficient of thermal conductivity. The model makes it possible to study stationary and non-stationary heating of both unprotected and fire-protected reinforced concrete structures. At the same time, with the help of the developed model, it is possible to take into account various factors affecting fire-resistant reinforced concrete structures: fire temperature regimes, thermophysical characteristics of reinforced concrete structures, coatings for fire protection of reinforced concrete structures. The adequacy of the developed model was tested, as a result of which it was established that the calculated values of temperatures satisfactorily correlate with experimental data. The largest area of deviation in temperature measurement is observed at the 100 th minute of calculation and is about 3 ºС, which is 9 %. The workability of the developed model for evaluating the fire resistance of fire-resistant reinforced concrete structures and its adequacy to real processes that occur during heating of fire-resistant reinforced concrete structures with the application of a load under the conditions of fire exposure under the standard fire temperature regime have been proven.

 

References

  1. Zhang, H. Y., Lv, H. R., Kodur, V., Qi, S. L. (2018). Performance comparison of fiber sheet strengthened RC beams bonded with geopolymer and epoxy resin under ambient and fire conditions. Journal of Structural Fire Engineering, 9(3), 174–188. https://doi.org/10.1108/JSFE-01-2017-0023
  2. Hertz, K., Giuliani, L., Sorensen, L. S. (2017). Fire resistance of extruded hollow-core slabs. Journal of Structural Fire Engineering, 8(3), 324–336.
  3. Franssen, J. M., Gernay, T. (2017). Modeling structures in fire with SAFIR®: Theoretical background and capabilities. Journal of Structural Fire Engineering, 8(3), 300–323. https://doi.org/10.1108/JSFE-07-2016-0010
  4. Mwangi, S. (2017). Why Broadgate Phase 8 composite floor did not fail under fire : Numerical investigation using ANSYS® FEA code. Journal of Structural Fire Engineering, 8(3), 238–257. https://doi.org/10.1108/JSFE-05-2017-0032
  5. Walls, R., Viljoen, C., de Clercq, H. (2020). Parametric investigation into the cross-sectional stress-strain behaviour, stiffness and thermal forces of steel, concrete and composite beams exposed to fire. Journal of Structural Fire Engineering, 11(1), 100–117. https://doi.org/10.1108/JSFE-10-2018-0031
  6. Vishal, M., Satyanarayanan, K. S. (2021). A review on research of fire-induced progressive collapse on structures. Journal of Structural Fire Engineering, 12(3), 410–425. https://doi.org/10.1108/JSFE-07-2020-0023
  7. Li, S., Jiaolei, Z., Zhao, D., Deng, L. (2021). Study on fire resistance of a prefabricated reinforced concrete frame structure. Journal of Structural Fire Engineering, 12(3), 363–376. https://doi.org/10.1108/JSFE-12-2020-0039
  8. Golovanov, V. I., Pekhotikov, A. V., Pavlov, V. V. (2021). Fire protection of steel and reinforced concrete structures of industrial buildings and structures. Bezopasnost’ Truda v Promyshlennosti, (9), 50–56. https://doi.org/10.24000/0409-2961-2021-9-50-56.
  9. Poklonskiy, V., Krukovskiy, P., Novak, S. (2021). Raschet zhelezobetonnoy plity perekrytiya pri vozdeystvii povyshennykh temperatur pozhara. Naukoviy vіsnik: tsivіlniy zakhist ta pozhezhna bezpeka, 2(10), 69–82. https://doi.org/10.33269/nvcz.2020.2.69-82
  10. ENV 1993-1-2:2005. Eurocode 3, Design of steel structures, Part 1.2, general rules – Structural fire design.
  11. Kovalov, A., Otrosh, Y., Semkiv, O., Konoval, V., Сhernenko, O. (2020). Influence of the fire temperature regime on the fire-retardant ability of reinforced-concrete floors coating. In Materials Science Forum (1006 MSF, 87–92). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.1006.87
  12. Kovalov, A. I., Otrosh, Y. A., Kovalevska, T. M., Safronov, S. O. (2019). Methodology for assessment of the fire-resistant quality of reinforced-concrete floors protected by fire-retardant coatings. In IOP Conference Series: Materials Science and Engineering 708. IOP Publishing Ltd. https://doi.org/10.1088/1757-899X/708/1/012058
  13. Kovalov, A., Yurii, O., Surianinov, M., Tatiana, K. (2019). Experimental and computer researches of ferroconcrete floor slabs at high-temperature influences. In Materials Science Forum. 968 MSF, 361–367. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.968.361