Formation of mathematical apparatus of methods of fire and explosion safety control of landfills

 

Nina Rashkevic

National University of Civil Defence of Ukraine

http://orcid.org/0000-0001-5124-6068

 

Vladislav Shershnyov

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-3711-7048

 

Vitalii Slovinskyi

Cherkasy Scientific Research Forensic Centre of the Ministry of Internal Affairs in Ukraine

http://orcid.org/0000-0002-6194-3171

 

Volodymyr Konoval

Cherkassy State Technological University

http://orcid.org/0000-0002-6740-6617

 

DOI: https://doi.org/10.52363/2524-0226-2021-34-17

 

Keywords: solid waste, fire and explosion hazard, methane, initial conditions, boundary conditions

 

Аnnotation

The fire and explosion hazard of landfills is analyzed taking into account the trends of introduction of biogas (methane) collection and utilization. According to the results of analysis and synthesis of factors of occurrence and spread of man-caused danger, available mathematical models and methods of counteraction to man-caused danger, the authors determined the initial and boundary conditions of is the basis for further development of appropriate methods of emergency response. During the analysis it was found that humidity, temperature of the landfill, the presence of sufficient oxygen at a certain point in time initiate the formation of explosive concentrations of methane in the array and contribute to the spread of hazards in landfills. The specific weight of the organic component, the value of the density of the array, the height of waste disposal affect the process of counteracting the danger, namely preventing a dangerous event and preventing the emergency from the object to the highest level of distribution, primarily in the first priority group, such as the number of victims and injured civilians and specialists of the State Emergency Service of Ukraine. A system of communication equations is determined by synthesis, taking into account the initial and boundary conditions of the mathematical apparatus, which allows to further develop a control algorithm for emergency response related to fire and explosion hazardous landfills close to settlements. Further research is aimed at: establishing the area of effective solutions for the choice of variation of solutions of individual problems to assess these indicators of the initial and boundary conditions of the mathematical apparatus in the development of emergency response methods associated with fire and explosion hazards; to develop a control algorithm for the appropriate methodology and verify its reliability

 

References

  1. Kaza, S., Yao, L. Bhada-Tata, P., Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development. Washington. DC: Word Bank. Retrieved fromhttps://openknowledge.worldbank.org/handle/10986/2174
  2. Eurostat. Municipal waste management operations. (2020). Retrieved from http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_wasmun
  3. World Fire Statistics. (2018). International Association of Fire and Rescue Service. Retrieved from http://www.ctif.org/ctif/world-fire-statistics
  4. Sereda, T. G., Mikhaylova, M. A., Shalayeva, Ye. V. (2010). Problemy pozharnoy bezopasnosti poligonov tvordykh bytovykh otkhodov. Materialy konferentsii. Sektsiya 4: Sovremennyye tekhnologii likvidatsii CHS i tekhnicheskoye obespecheniye avariyno-spasatel'nykh rabot, 336–341. Retrieved from https://www.lib.tpu.ru/fulltext/c/2013/C52/105.pdf
  5. Suthar, S., Singh, P. (2015). Household solid waste generation and composition in different family size and socio-economic groups: A case study. Sustainable Cities and Society, 14, 56–63. doi: org/10.1016/j.scs.2014.07.004
  6. Götze, R., Boldrin, A., Scheutz, C. Astrup, T. F. (2016). Physico-chemicalcharacterisation of material fractions in household waste: Overview of data in literature. Waste Management, 49, 3–14. doi: 10.1016/j.wasman.2016.01.008
  7. Statistical Report 2018. (2018). Annual Statistical Report of the European Biogas Association. Retrieved from https://www.europeanbiogas.eu/eba-statisticalreport-2018.
  8. Aghdam, E., Scheutz, C., Kjeldsen, P. (2019). Impact of meteorological parameters on extracted landfill gas composition and flow. Waste Management, 87, 905–914. doi: 10.1016/j.wasman.2018.01.045
  9. Arsova, L. (2010). Anaerobic digestion of food waste: current status, problems and an alternative product [M.S. thesis] Berlin, Germany: Columbia University. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.7158&rep=rep1&type=pdf
  10. Majdinasab, A., Yuan, Q. (2017). Performance of the biotic systems for reducing methane emissions from landfill sites: A review. Ecological Engineering, 104, 116–130. doi: 10.1016/j.ecoleng.2017.04.015
  11. Hanson, J. L. Yeşiller, N., Oettle, N. K. (2010). Spatial and Temporal Temperature Distributions in Municipal Solid Waste Landfills. Journal of Environmental Engineering, 136, 8, 11. Retrieved from https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1194&context=cenv_fac.
  12. Faitli, J., Magyar, T., Erdélyi, A., Murányi, A. (2015). Characterization of thermal properties of municipal solid waste landfills. Waste Management, 36, 213–221. doi: org/10.1016/j.wasman.2014.10.028
  13. Frid, V., Doudkinski, D., Liskevich, G. et al. (2010). Geophysicalgeochemical investigation of fire-prone landfills. Environ Earth Sci., 60, 787–798. doi: 10.1007/s12665-009-0216-0
  14. Musilli, A. (2016). Landfill elevated internal temperature detection and landfill fire index assessment for fire monitoring. Theses and Dissertations, 168. Retrieved from: https://rdw.rowan.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=3342&context=etd
  15. Popovych, V. V., Dominik, A. M. (2015). Osoblyvosti temperaturnoho polya smittyezvalyshch. Naukovo-tekhnichnyy zbirnyk: «Komunalne hospodarstvo mist, 120 (1), 209–212. Retrieved from https://khg.kname.edu.ua/index.php/khg/article/download/4876/4833/+&cd=1&hl=ru&ct=clnk&gl=ua
  16. Rashkevych, N. V. (2020). Rozrobka keruyuchoho alhorytmu metodyky poperedzhennya nadzvychaynykh sytuatsiy na polihoni tverdykh pobutovykh vidkhodiv z likvidatsiynym enerhoyemnym tekhnolohichnym ustatkuvannyam. Naukovotekhnichnyy zbirnyk «Komunalne hospodarstvo mist», 3, 156, 188–194. doi: 10.33042/2522-1809-2020-3-156-188-194
  17. Divizinyuk, M., Mirnenko, V., Rashkevych, N., Shevchenko, O. (2020). Rozrobka laboratorno-eksperymentalnoyi ustanovky dlya perevirky dostovirnosti matematychnoyi modeli ta rozroblenoyi na yiyi osnovi metodyky poperedzhennya nadzvychaynykh sytuatsiy na polihonakh tverdykh pobutovykh vidkhodiv z tekhnolohichnym likvidatsiynym enerhoyemnym ustatkuvannyam. Social Development and Security, 10, 5, 15–27. doi: 10.33445/sds.2020.10.5.2