Developing a model of the radiating surface of a flame over a flammable liquid spill in the presence of wind

 

Volodymyr Oliinik

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-5193-1775

 

Oleksii Basmanov

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-6434-6575

 

DOI: https://doi.org/10.52363/2524-0226-2023-38-8

 

Keywords: flammable liquid spill, spill fire, radiating flame surface, heat flow

 

Аnnotation

The object of the study is a spill fire. The subject of the study is the geometric characteristics of the flame, in particular, the length and angle of inclination. The model of the radiating surface of a flame over a burning liquid spill of an arbitrary shape is constructed. The essence of the approach is that the length of the flame at a given point is equal to the length of the flame at the point of the circular spill located at the same distance from the boundary of the spill. It allows generalizing the known empirical dependences for the case of spills of arbitrary shape. The flame length is a power-law function of the distance to the spill boundary and the mass loss rate per unit area. To take into account the effect of wind on the shape of the flame, the empirical dependence of the length and angle of inclination of the flame on the wind speed is used. It is assumed that the wind deforms the flame in such a way that all points of the flame surface deviate by the same angle from the vertical. Wind inclines the flame from the vertical axis more significantly for the smaller size of the spill and smaller mass loss rate per unit area. This is due to the formation of more powerful upward currents over the combustion center when its size and intensity of liquid combustion increase. A model of the radiating surface of the flame was constructed in a parametric form. The results obtained from the model are in good agreement with the experimental ones. The relative error for the angle of deviation of the flame by the wind from the vertical axis does not exceed 9%. In practice, this opens up opportunities for calculating the thermal impact on nearby technological objects, as well as determining safe zones for the location of personnel and equipment involved in fire suppression. The model can be used to specify the thermal effect of fire on steel and concrete structures.

 

References

 

  1. Huang, K., Chen, G., Khan, F., Yang, Y. (2021). Dynamic analysis for fire-induced domino effects in chemical process industries. Process Safety and Environmental Protection, 148, 686–697. doi: 10.1016/j.psep.2021.01.042
  2. Hemmatian, B., Abdolhamidzadeh, B., Darbra, R., Casal, J. (2014). The significance of domino effect in chemical accidents. Journal of Loss Prevention in the Process Industries, 29, 30–38. doi: 10.1016/j.jlp.2014.01.003
  3. Fabiano, B., Caviglione, C., Reverberi, A. P., Palazzi, E. (2016). Multicomponent Hydrocarbon Pool Fire: Analytical Modelling and Field Application. Chemical Engineering Transactions, 48, 187–192. doi: 10.3303/CET1648032
  4. Yang, R., Khan, F., Neto, E., Rusli, R., Ji, J. (2020). Could pool fire alone cause a domino effect? Reliability Engineering & System Safety, 202, 106976. doi: 1016/j.ress.2020.106976
  5. Reniers G., Cozzani V. (2013). Features of Escalation Scenarios. Domino Effects in the Process Industries. Elsevier. 30–42. doi: 10.1016/B978-0-444-54323-3.00003-8
  6. Raja, S., Tauseef, S. M., Abbasi, T. (2018). Risk of Fuel Spills and the Transient Models of Spill Area Forecasting. Journal of Failure Analysis and Prevention, 18, 445–455. doi: 1007/s11668-018-0429-1
  7. Liu, J., Li, D., Wang, Z., Chai, X. (2021). A state-of-the-art research progress and prospect of liquid fuel spill fires. Case Studies in Thermal Engineering, 28, 101421. doi: 10.1016/j.csite.2021.101421
  8. Zhang, Zh., Zong, R., Tao, Ch., Ren, J., Lu, Sh. (2020). Experimental study on flame height of two oil tank fires under different lip heights and distances. Process Safety and Environmental Protection, 139, 182–190. doi: 10.1016/j.psep.2020.04.019
  9. He, P., Wang, P., Wang, K., Liu, X., Wang, C., Tao, C., Liu, Y. (2019). The evolution of flame height and air flow for double rectangular pool fires, Fuel, 237, 486–493. doi: 10.1016/j.fuel.2018.10.027
  10. Miao, Y., Chen, Y., Tang, F., Zhang, X., Hu, L. (2023). An experimental study on flame geometry and radiation flux of line-source fire over inclined surface. Proceedings of the Combustion Institute, 39(3), 3795–3803. doi: 10.1016/
    j.proci.2022.07.109
  11. Chen, Y., Fang, J., Zhang, X., Miao, Y., Lin, Y., Tu, R., Hu, L. (2023). Pool fire dynamics: Principles, models and recent advances, Progress in Energy and Combustion Science, 95, 101070. doi: 10.1016/j.pecs.2022.101070
  12. Guo, Y., Xiao, G., Wang, L., Chen, C., Deng, H., Mi, H., Tu, C., Li,Y.(2023). Pool fire burning characteristics and risks under wind-free conditions: State-of-the-art, Fire Safety Journal, 136, 103755. doi: 10.1016/j.firesaf.2023.103755
  13. Yao, Y., Li, Y., Ingason, H., Cheng, X. (2019). Scale effect of mass loss rates for pool fires in an open environment and in tunnels with wind, Fire Safety Journal, 105, 41–50. doi: 10.1016/j.firesaf.2019.02.004
  14. Yao, Y., Li, Y., Ingason, H., Cheng, X., Zhang, H. (2021). Theoretical and numerical study on influence of wind on mass loss rates of heptane pool fires at different scales, Fire Safety Journal, 120, 103048. doi: 10.1016/j.firesaf.2020.103048
  15. Ditch, B. D., Ris, J. L., Blanchat, T. K., Chaos, M., Bill, R. G., Dorofeev, S.B. (2013). Pool fires – An empirical correlation, Combustion and Flame, 160 (12), 2964–2974. doi: 10.1016/j.combustflame.2013.06.020
  16. Drysdale, D. An Introduction to Fire Dynamics. (2011). 3nd Edition, John Wiley & Sons, Ltd., New York. doi: 10.1002/9781119975465
  17. Abramov, Y., Basmanov, O., Krivtsova, V., Salamov, J. (2019). Modeling of spilling and extinguishing of burning fuel on horizontal surface, Naukovyi Visnyk NHU, 4, 86–90. doi: 10.29202/nvngu/2019-4/16
  18. Oliinik, V., Basmanov, O. (2023). Model of spreading and burning the liquid on the soil, Problems of emergency situations, 1(37), 18–30. doi: 10.52363/2524-0226-2023-37-2
  19. Abramov, Y., Basmanov, O., Khmyrov, I., Oliinik, V. (2022). Justifying the experimental method for determining the parameters of liquid infiltration in bulk material, Eastern-European Journal of Enterprise Technologies, 4/10(118), 24–29. doi: 10.15587/1729-4061.2022.262249
  20. Abramov, Y., Basmanov, O., Oliinik, V., Khmyrov, I., Khmyrova, A. (2022). Modeling the convective component of the heat flow from a spill fire at railway accidence. EUREKA: Physics and Engineering, 6, 128–138. doi: 10.21303/2461-4262.2022.002702
  21. Kovalov, A., Otrosh, Y., Rybka, E., Kovalevska, T., Togobytska, V., Rolin,I. (2020). Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. In Materials Science Forum. Trans Tech Publications Ltd, 1006, 179–184. doi: 10.4028/www.scientific.net/MSF.1006.179
  22. Abramov, Y. A., Basmanov, O. E., Mikhayluk, A. A., Salamov, J. (2018). Model of thermal effect of fire within a dike on the oil tank. Naukovyi Visnyk NHU, 2, 95–100. doi: 10.29202/nvngu/2018-2/12
  23. Abramov, Y., Basmanov, O., Salamov, J., Mikhayluk, A., Yashchenko, O. (2019). Developing a model of tank cooling by water jets from hydraulic monitors under conditions of fire, Eastern-European Journal of Enterprise Technologies, 1/10(97), 14–20 doi: 10.15587/1729-4061.2019.154669
  24. Lees, F. P. (2012). Loss prevention in the process industries, 4th Edition. doi: 10.1016/C2009-0-24104-3
  25. 25. Instructions for extinguishing fires in tanks with oil and oil products. Normative act on fire safety035–2004, 79. Available at: https://zakon.isu.net.ua/sites/default/
    files/normdocs/instrukciya_schodo_gasinnya_pozhezh_u_rezervuarakh_iz_naftoyu.pdf
  26. Otrosh, Yu., Semkiv, O., Rybka, E., Kovalov, A. (2009). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708, 1. doi: 10.1088/1757-899X/708/1/012065
  27. Pospelov, B., Andronov, V., Rybka, E., Skliarov. S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies 4(9), 53–59. doi: 10.15587/1729-4061.2017.108448