Characteristics of the amplitude change of the bispectrum of the parameters of the gas environment during ignition of materials

 

Boris Pospelov

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-0957-3839

 

Evgeniy Rybka

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-5396-5151

 

Ruslan Meleschenko

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0001-5411-2030

 

Yuliiy Bezuhla

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0003-4022-2807

 

Оlexander Yashchenko

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0001-7129-389X

 

Pavlo Borodych  

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0001-9933-8498

 

DOI: https://doi.org/10.52363/2524-0226-2023-37-9

 

Keywords: stability of objects, hazardous events, ignition of materials, gaseous environment, amplitude bispectrum, fire detection

 

Аnnotation

 

The features of the amplitude bispectra of the dynamics of the main dangerous parameters of the gas medium at the intervals of the absence and appearance of ignition of materials in the premises were analyzed and revealed. The problem to be solved is the detection of fires in the premises before the fire appears. The results of the research in general indicate the non-linear nature of the dynamics of dangerous parameters of the gas environment before and after the ignition of the materials. It was established that the amplitude bispectrum, in contrast to the traditional amplitude spectrum of dangerous parameters of the gas environment, contains information for reliable detection of fires. As such information, it is proposed to use the value of the positive dynamic range in relation to the amplitudes of the bispectrum. It was established that when alcohol ignites, the positive dynamics of the amplitude bispectrum changes for all dangerous parameters of the gas environment. At the same time, significant changes are characteristic of smoke density (from 1 dB to 30 dB) and temperature (from 1 dB to 70 dB). The dynamic range of the bispectrum amplitudes for carbon monoxide concentration increases from 30 dB to 70 dB. It was determined that the ignition of paper causes a decrease in the dynamic range of the bispectrum amplitudes for smoke density from 40 dB to 20 dB. At the same time, the dynamic range of bispectrum amplitudes for carbon monoxide concentration and temperature increases to 60 dB. When wood catches fire, the dynamic range of amplitudes of the carbon monoxide concentration bispectrum increases from 40 dB to 60 dB, and the temperature increases from 30 dB to 40 dB. It was found that when textiles catch fire, the range of bispectrum amplitude dynamics for temperature increases from 10 dB to 60 dB. In general, the obtained results indicate that the dynamic characteristics of the amplitudes of the bispectrum of the dynamics of dangerous parameters of the gas environment can be considered as signs of early detection of fires in the premises.

 

References

 

  1. Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern-European Journal of Enterprise Technologies, 6/10(90), 57–64. doi: 10.15587/1729-4061.2017.118213
  2. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. International Journal of Multiphysics, 9, 1, 9–20. doi: 10.1260/1750-9548.9.1.9
  3. Mygalenko, K., Nuyanzin, V., Zemlianskyi, A., Dominik, A., Pozdieiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1/10(91), 31–37. doi: 10.15587/1729-4061.2018.121727
  4. Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V., Sokolov, D., Dement, M., Hurkovskyi, V., Nikolaiev, K., Yatsyshyn T., Dimitriieva, D. (2019). Physical features of pollutants spread in the air during the emergency at NPPs. Nuclear and Radiation Safety, 4/84, 11. doi: 10.32918/nrs.2019.4(84).11
  5. Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. doi: 10.1051/e3sconf/20186000003
  6. Reproduced with permission from fire loss in the United States during 2019. (2020). National Fire Protection Association. 11. Available at: nfpa.org
  7. Ragimov, S., Sobyna, V., Vambol, S., Vambol, V., Feshchenko, A., Zakora, A., Strejekurov, E., Shalomov, V. (2018). Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering, 91, 1, 27–33. doi:  10.5604/01.3001.0012.9654
  8. Otrosh, Yu., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708, 1, 012065. doi: 10.1088/1757-899x/708/1/012065
  9. Vambol, S., Vambol, V., Kondratenko, O., Suchikova, Y., Hurenko, O. (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3/10(87), 63–73. doi: 10.15587/1729-4061.2017.102314
  10. Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy khimii i khimicheskoi tekhnologii, 1, 92–99. doi: 10.32434/0321-4095-2019-122-1-92-99
  11. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R., Bezuhla, Yu., Hrachova, I., Nesterenko, R., Shumilova, А. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4/10(106), 37–44. doi: 10.15587/1729-4061.2020.210059
  12. Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Yu. et. al.; Sadkovyi, V., Rybka, E., Otrosh, Yu. (Eds.) (2021). Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 180. doi: 10.15587/978-617-7319-43-5
  13. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I., Butenko, T., Bezuhla, Yu., Karpets, K., Kochanov, E. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2/10(110), 43–50. doi: 10.15587/1729-4061.2021.226692
  14. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5/9(89), 43–48. doi: 10.15587/1729-4061.2017.110092
  15. BS EN 54-30:2015 Fire detection and fire alarm systems. Part 30: Multi-sensor fire detectors. Point detectors using a combination of carbon monoxide and heat sensors. doi: 10.3403/30266860u
  16. BS EN 54-31:2014 Fire detection and fire alarm system. – Part 31: Multi-sensor fire detectors. Point detectors using a combination of smoke, carbon monoxide and optionally heat sensors. Available at: https://standards.iteh.ai/catalog/standards/
    cen/6d78459f-6378-4845-bf94-3e52a88692df/en-54-31-2014
  17. ISO 7240-8:2014 Fire detection and alarm systems – Part 8: Point-type fire detectors using a carbon monoxide sensor in combination with a heat sensor.
  18. Aspey, R. A., Brazier, K. J., Spencer, J. W. (2005). Multiwavelength sensing of smoke using a polychromatic LED: Mie extinction characterization using HLS analysis. IEEE Sens. J., 5, 1050–1056. doi: 10.1109/jsen.2005.845207
  19. Chen, S. -J., Hovde, D. C., Peterson, K. A., Marshall, A. W. (2007). Fire detection using smoke and gas sensors. Fire Safety J., 42, 507–515. doi: 10.1016/j.firesaf.2007.01.006
  20. Shi, M., Bermak, A., Chandrasekaran, S., Amira, A., Brahim-Belhouari, S. (2008). A committee machine gas identification system based on dynamically reconfigurable FPGA. IEEE Sens. J., 8, 403–414. doi: 10.1109/jsen.2008.917124
  21. Skinner, A. J., Lambert, M. F. (2006). Using smart sensor strings for continuous monitoring of temperature stratification in large water bodies. IEEE Sensors Journal, 6, 1473–1481. doi: 10.1109/jsen.2006.881373
  22. Cheon, J., Lee, J., Lee, I., Chae, Y., Yoo, Y., Han, G. (2009). A single-chip CMOS smoke and temperature sensor for an intelligent fire detector. IEEE Sensors Journal, 9, 914–921. doi: 10.1109/jsen.2009.2024703
  23. Ji, J., Yang, L., Fan, W. (2003). Experimental Study on Effects of Burning Behaviours of Materials Caused by External Heat Radiation. Journal of Combustion Science and Technology, 9, 139.
  24. Peng, X., Liu, S., Lu, G. (2005). Experimental Analysis on Heat Release Rate of Materials. Journal of Chongqing University, 28, 122.
  25. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5/10(95), 25–30. doi: 10.15587/1729-4061.2018.142995
  26. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise, 3/9(93), 34–40. doi: 10.15587/1729-4061.2018.133127
  27. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T., Yashchenko, O., Bezuhla, Yu., Karpets, K., Vasylchenko, R. (2021). Short-term fire forecast based on air state gain recurrency and zero-order Brown model. Eastern-European Journal of Enterprise, 3/10(111), 27–33. doi: 10.15587/1729-4061.2021.233606
  28. Pospelov, B., Rybka, E., Krainiukov, O., Yashchenko, O., Bezuhla, Y., Bielai, S., Kochanov, E., Hryshko, S., Poltavski, E., Nepsha, O. (2021). Short-term forecast of fire in the premises based on modification of the Brown’s zero-order model. Eastern-European Journal of Enterprise Technologies, 4/10(112), 52–58. doi: 10.15587/1729-4061.2021.238555
  29. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Yu. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4/10(100), 22–29. doi: 10.15587/1729-4061.2019.176579
  30. Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1/10(97), 29–35. doi: 10.15587/1729-4061.2019.155027
  31. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O., Semenyshyna, I., Kapitan, R, Promska, A., Horbov, O. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise, 6/4(102), 39–46. doi: 10.15587/1729-4061.2019.187252
  32. Sadkovyi V., Pospelov B., Andronov V., Rybka E., Krainiukov O., Rud А., Karpets K., Bezuhla Yu. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise, 6/10(108), 14–22. doi: 10.15587/1729-4061.2020.218714
  33. Pospelov, B., Andronov, V., Rybka, E., Bezuhla, Y., Liashevska, O., Butenko, T., Darmofal, E., Hryshko, S., Kozynska, I., Bielashov, Y. (2022). Empirical cumulative distribution function of the characteristic sign of the gas environment during fire. Eastern-European Journal of Enterprise Technologies, 4(10(118)), 60–66. doi: 10.15587/1729-4061.2022.263194
  34. Gottuk, D. T., Wright, M. T., Wong, J. T., Pham, H. V., Rose-Pehrsson, S. L., Hart, S., Hammond, M., Williams, F. W., Tatem, P. A., Street, T. T. (2002). Prototype Early Warning Fire Detection Systems: Test Series 4 Results. NRL/MR/6180–02–8602, Naval Research Laboratory.
  35. Polstiankin, R. M., Pospelov, B. B. (2015). Stochastic models of hazardous factors and parameters of a fire in the premises. Problemy pozharnoy bezopasnosti, 38, 130–135. Available at: http://nbuv.gov.ua/UJRN/Ppb_2015_38_24
  36. Saeed, M., Alfatih, S. (2013). Nonlinearity detection in hydraulic machines utilizing bispectral analysis. TJ Mechanical engineering and machinery, 13–21.
  37. Yang, K., Zhang, R., Chen, S., Zhang, F., Yang, J., Zhang, X. (2015). Series Arc Fault Detection Algorithm Based on Autoregressive Bispectrum Analysis. Algorithms, 8, 929–950. doi: 10.3390/a8040929
  38. Yang, B., Wang, M., Zan, T., Gao, X., (2021). Application of bispectrum diagonal slice feature analysis in tool wear states monitoring. Research Square. doi: 10.21203/rs.3.rs-775113/v1
  39. Cui, L., Xu, H., Ge, J., Cao, M., Xu, Y., Xu, W., Sumarac, D. (2021). Use of Bispectrum Analysis to Inspect the Non-Linear Dynamic Characteristics of Beam-Type Structures Containing a Breathing Crack. Sensors. Vol. 21. 1177. doi: 10.3390/s21041177
  40. Max, J. (1981). Principes generaus et methods classiques. Tome 1. Paris New York Barselone Milan Mexico Rio de Janeiro, 311.
  41. Mohankumar, K. (2015). Implementation of an underwater target classifier using higher order spectral features. Cochin. Available at: https://dyuthi.cusat.ac.in/
    xmlui/bitstream/handle/purl/5368/T-2396.pdf?sequence=1
  42. Nikias, C. L., Raghuveer, M. R. (1987). Bispectrum estimation: A digital signal processing framework. Proceedings of the IEEE, 75(7), 869–891. doi: 10.1109/proc.1987.13824