Оцінка вогнестійкості вогнезахищених сталевих конструкцій для забезпечення пожежної безпеки об’єктів

 

Ковальов Андрій Іванович

Національний університет цивільного захисту України

http://orcid.org/0000-0002-6525-7558

 

Отрош Юрій Анатолійович

Національний університет цивільного захисту України

http://orcid.org/0000-0003-0698-2888

 

Рашкевич Ніна Владиславна

Національний університет цивільного захисту України

http://orcid.org/0000-0001-5124-6068

 

Рудаков Сергій Валерійович

Національний університет цивільного захисту України

http://orcid.org/0000-0001-8263-0476

 

Томенко Віталій Іванович

Черкаський інститут пожежної безпеки ім. Героїв Чорнобиля НУЦЗ України

http://orcid.org/0000-0001-7139-9141

 

Юрченко Сергій Петрович

Черкаський науково-дослідний експертно-криміналістичний центр МВС України

http://orcid.org/0000-0002-2775-238X

 

DOI: https://doi.org/10.52363/2524-0226-2023-37-20

 

Ключові слова: вогнезахищені сталеві конструкції, оцінювання вогнестійкості, чисельне моделювання, вог-незахисні покриття, ЛІРА-САПР

 

Анотація

 

Розроблено структурно-логічну схему забезпечення вогнестійкості вогнезахищених сталевих конструкцій на основі розрахунково-експериментального методу оцінювання вог-нестійкості вогнезахищених сталевих конструкцій. Метод відрізняється від наявних можли-вістю визначати часу досягнення критичної температури вогнезахищеної сталевої констру-кції в залежності від товщини вогнезахисного покриття, тривалості вогневого впливу, сце-нарію пожежі, заданого рівня навантаження, теплофізичних характеристик сталі та вогнеза-хисного покриття, а також можливістю використання експериментальних значень при про-веденні випробувань на вогнестійкість як сталевих конструкцій, так і зразків зменшених ро-змірів, що полегшує процедуру оцінювання вогнестійкості. Метод доцільно використовува-ти при розрахунку вогнестійкості вогнезахищених сталевих конструкцій в результаті прое-ктування вогнезахисту сталевих конструкцій. Розроблено комп’ютерну модель напружено-деформованого стану вогнезахищеної сталевої балки в програмному забезпеченні «ЛІРА-САПР» для підвищення рівня пожежної безпеки будівель та споруд. Проведено статичний розрахунок вогнезахищеної сталевої балки, в результаті якого отримано напружено-деформований стан балки при сумісній дії силових і температурних навантажень. Проведе-но порівняння результатів чисельного моделювання з результатами експериментального дослідження вогнестійкості. Встановлено параметри моделі, а саме: теплофізичні характе-ристики вогнезахисних покриттів, теплофізичні та механічні властивості матеріалів, з яких складається конструкція, нелінійні закони деформування матеріалів моделі, міцнісні та де-формаційні властивості матеріалів при високотемпературних та силових впливах, які до-зволяють з достатньою для інженерних розрахунків точністю (до 3 %) оцінювати вогнестій-кість вогнезахищених сталевих конструкцій.

 

Посилання

 

  1. Franssen J. M., Gernay T. Modeling structures in fire with SAFIR®: Theoretical background and capabilities. Journal of Structural Fire Engineering. 2017. Vol. 8(3). Р. 300–323. doi: 10.1108/JSFE-07-2016-0010
  2. Yew M. C., Ramli Sulong N. H. Fire-resistive performance of intumescent flame-retardant coatings for steel. Materials and Design. 2012. Vol. 34. Р. 719–724. doi: 10.1016/j.matdes.2011.05.032
  3. Nadjai A., Petrou K., Han S., Ali F. Performance of unprotected and protected cellular beams in fire conditions. Construction and Building Materials. 2016. Vol. 105. P. 579–588. doi:URL: 10.1016/j.conbuildmat.2015.12.150
  4. Li G. Q., Han J., Lou G. B., Wang Y. C. Predicting intumescent coating protected steel temperature in fire using constant thermal conductivity. Thin-Walled Structures. 2016. Vol. 98. Р. 177–184. doi: 10.1016/j.tws.2015.03.008
  5. Kovalov A., Otrosh Y., Chernenko O., Zhuravskij M., Anszczak M. Modeling of non-stationary heating of steel plates with fire-protective coatings in Ansys under the conditions of hydrocarbon fire temperature mode. In Materials Science Forum. 2021. Vol. 1038 MSF. P. 514–523. Trans Tech Publications Ltd.
  6. Kovalov A., Slovinskyi V., Udianskyi M., Ponomarenko I., Anszczak M. Research of fireproof capability of coating for metal constructions using calculation-experimental method. In Materials Science Forum. 2020. Vol. 1006 MSF. P. 3–10.
  7. Džolev I., Radujković A., Cvetkovska M., Lađinović Đ., Radonjanin V. Fire analysis of a simply supported steel beam using Opensees and Ansys Workbench. In 4th International Conference Contemporary Achievements in Civil Engineering, Subotica. 2016. Vol. 22. P. 315–322.
  8. Both I., Wald F., Zaharia R. Benchmark for numerical analysis of steel and composite floors exposed to fire using a general purpose FEM code. Journal of Applied Engineering Science. 2016. Vol. 14(2). P. 275–284. doi: 10.5937/jaes14-8664
  9. Yan X., Gernay T. Local buckling of cold-formed high-strength steel hollow section columns at elevated temperatures. Journal of Constructional Steel Research. 2022. Vol. 196. doi: 10.1016/j.jcsr.2022.107403
  10. Morys M., Häßler D., Krüger S., Schartel B., Hothan S. Beyond the standard time-temperature curve: Assessment of intumescent coatings under standard and deviant temperature curves. Fire Safety Journal. 2020. Vol. 112. doi: 10.1016/j.firesaf.2020.102951
  11. Song Q. Y., Han L. H., Zhou K., Feng Y. Temperature distribution of CFST columns protected by intumescent fire coating. Ninth International Conference on Advances in Steel Structures (ICASS’2018) Hong Kong Institution of Steel Construction. doi: 10.18057/ICASS2018.P.164
  12. Sadkovyi V., Andronov V., Semkiv O., Kovalov A., Rybka E., Otrosh Yu. et. al. Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 2021. 180 р. doi: 10.15587/978-617-7319-43-5