Mathematical modeling of the process of fine water mist generation by shock waves
Dubinin Dmytro
National University of Civil Protection of Ukraine
https://orcid.org/0000-0001-8948-5240
Korytchenko Kostiantyn
National Technical University "Kharkiv Polytechnic Institute"
https://orcid.org/0000-0002-1005-7778
Nuianzin Oleksandr
National University of Civil Protection of Ukraine
https://orcid.org/0000-0003-2527-6073
Hovalenkov Serhii
National University of Civil Protection of Ukraine
https://orcid.org/0000-0001-5610-814X
DOI: https://doi.org/10.52363/2524-0226-2025-42-8
Keywords: system, fire extinguishing, fire, fine water mist, mathematical model, simulation, generation, atomization
Аnnotation
The conducted studies made it possible to identify the features of the process of fine water mist generation from the nozzle of a fire-extinguishing system under the action of shock waves and to substantiate a mathematical model describing this process. Mathematical modeling was carried out using specialized simulation software based on the Volume of Fluid model. According to the results, the generation of fine-dispersed water at the outlet of the fire-extinguishing nozzle under the influence of shock waves occurs within 1.13–1.73 ms, followed by a transition to steady-state atomization and dispersion within 2.02–2.41 ms. At 5.11–5.24 ms, the process terminates due to the depletion of water in the nozzle. The most intense atomization was recorded at 1.73 ms, while the maximum spread of the water mist cloud occurred at 2.02 ms, defining the key stages of generation and process efficiency. The main parameters of water mist generation and delivery were determined, including the total volume, number of droplets, and density within the computational domain. The mist cloud was found to have a cylindrical shape with a water volume of 1.37 L(1.37×10-3 m3), and the average water density in the air-water flow was 0.343 kg/ m3. For water droplets of various dispersities, their main parameters were determined. Thus, for droplets with a diameter of 5 µm, the volume of a single droplet is 6.54×10-17 m3, the total number of droplets is 7.2 million, and the droplet density within the fine water mist is 5.26×109 drops/m3. For droplets with a diameter of 50 µm, these parameters are 6.54×10-14 m3, 7.2 thousand, and 5.26×106 drops/m3, respectively; while for droplets of 100 µm, the corresponding values are 5.24×10-13 m3, 900, and 6.57×105 drops/m3. Mathematical modeling made it possible to investigate the process of fine water mist generation by the fire-extinguishing system under the influence of shock waves. The obtained parameters of fine-dispersed water determine the potential for its application in extinguishing fires of various classes, including under conditions of armed aggression.
References
- Дії підрозділів ДСНС України в умовах воєнного стану. URL: https://dsns.gov.ua/upload/1/9/2/4/3/5/9/diyi-dsns-objednana-kniga-compressed.pdf
- Shi J., Xu Y., Ren W., Zhang H. Critical condition and transient evolution of methane detonation extinction by fine water droplet curtains. Fuel. 2022. 315. Р. 123133. doi: 10.1016/j.fuel.2022.123133
- Watanabe H., Matsuo A., Chinnayya A., Matsuoka K., Kawasaki A., Kasahara J. Numerical analysis on behavior of dilute water droplets in detonation. Proceedings of the Combustion Institute. 2021. 38(3). Р. 3709–3716. doi: 10.1016/j.proci.2020.07.141
- Xu Y., Zhang H. Interactions between a propagating detonation wave and circular water cloud in hydrogen/air mixture. Combustion and Flame. 2022. 245. Р. 112369. doi: 10.1016/j.combustflame.2022.112369
- Yuan Y., Wu S., Shen B. A numerical simulation of the suppression of hydrogen jet fires on hydrogen fuel cell ships using a fine water mist. International Journal of Hydrogen Energy. 2021. 46(24). Р. 13353–13364. doi: 10.1016/j.ijhydene.2021.01.130
- Liu Y., Wang X., Liu T., Ma J., Li G., Zhao Z. Preliminary study on extinguishing shielded fire with water mist. Process Safety and Environmental Protection. 2020. 141. Р. 344354. doi: 10.1016/j.psep.2020.05.043
- Dubinin D., Korytchenko K., Lisnyak A., Hrytsyna I., Trigub V. Improving the installation for fire extinguishing with finely-dispersed water. Eastern-European Journal of Enterprise Technologies. 2018. 2/10(92). Р. 8–43. doi: 10.15587/1729- 4061.2018.127865
- Korytchenko K., Sakun O., Dubinin D., Khilko Y., Slepuzhnikov E., Nikorchuk A., Tsebriuk I. Experimental investigation of the fire-extinguishing system with a gasdetonation charge for fluid acceleration. Eastern-European Journal of Enterprise Technologies. 2018. 3/5(93). Р. 47–54. doi: 10.15587/1729-4061.2018.134193
- Rossano V., Cittadini A., De Stefano G. Computational Evaluation of Shock Wave Interaction with a Liquid Droplet. Applied Sciences. 2022. 12(3). Р. 1349. doi: 10.3390/app12031349
- Shibue K., Sugiyama Y., Matsuo A. Numerical study of the effect on blast-wave mitigation of the quasi-steady drag force from a layer of water droplets sprayed into a confined geometry. Process Safety and Environmental Protection. 2022. 160. Р. 491–501. doi: 10.1016/j.psep.2022.02.038
- Zhao J. X., Liu S. H., Yu W. X., Jiang L. Numerical study on blast mitigation by a water mist: impact of the mean droplet diameter and volume fraction. Journal of Applied Fluid Mechanics. 2024. 17(4). Р. 844856. doi: 10.47176/jafm.17.4.2230
- Xu S., Jin X., Fan W., Wen H., Wang B. Numerical investigation on the interaction characteristics between the gaseous detonation wave and the water droplet. Combustion and Flame. 2024. 269. Р. 113713. doi: 10.1016/j.combustflame.
2024.113713
- Li Y., Bi M., Zhou Y., Gao W. Hydrogen cloud explosion suppression by micron-size water mist. International Journal of Hydrogen Energy. 2022. 47(55). Р. 2346223470. doi: 10.1016/j.ijhydene.2022.05.132
- Дубінін Д. П., Коритченко К. В., Криворучко Є. М., Рагімов С. Ю., Тригуб В. В. Особливості процесу заповнення водою ствола установки пожежогасіння періодично-імпульсної дії. Проблеми надзвичайних ситуацій. 2023. № 38. С. 69–79. doi: 10.52363/2524-0226-2023-38-5
- Dubinin D., Korytchenko K., Krivoruchko Y., Tryfonov O., Sakun O., Ragimov S., Tryhub V. Numerical studies of the breakup of the water jet by a shock wave in the barrel of the fire extinguishing installation. Sigurnost. 2024. 66(2). Р. 139–150. doi: 10.31306/s.66.2.4
- ANSYS_Fluent_Theory_Guide. URL: https://dl.cfdexperts.net/cfd_resources/
Ansys_Documentation/Fluent/Ansys_Fluent_Theory_Guide.pdf











