Вплив конструкції шини на безпеку руху аварійно-рятувального автомобіля

 

Коханенко Володимир Богданович

Національний університет цивільного захисту України

http://orcid.org/0000-0001-5555-5239

 

Качур Тарас Валентинович

Національний університет цивільного захисту України

http://orcid.org/0000-0002-1683-956X

 

Рагімов Сергій Юсубович

Національний університет цивільного захисту України

http://orcid.org/0000-0002-8639-3348

 

DOI: https://doi.org/10.52363/2524-0226-2021-33-21

 

Ключові слова: аварійно-рятувальний автомобіль, пневматична шина, діагональна конструкція, кромки брекера, розподіл температури, надійність

 

Анотація

Сучасні аварійно-рятувальні автомобілі комплектуються шинами радіальної конструкції з металокордом в брекері. Однак таким шинам притаманні передчасні і непередбачувані виходи з експлуатації. Виходять з експлуатації 50-70% шин, що не дозволяє реалізувати ресурс шини по зношенню протектора. З метою реалізації ресурсу протектора до повного зношення та підвищення надійності експлуатації шин аварійно-рятувальних автомобілів необхідно визначити причини передчасного виходу шин з експлуатації. Вирішення цього питання привело до вивчення розподілу температури в елементах пневматичної шини, а також визначення впливу конструкції шини на працездатність і надійність аварійно-рятувального автомобіля. При дослідженні причин виходу шин з експлуатації встановлено, що наявність екрану погіршує тепловідвід з каркаса і з усіх шарів шини, чим підвищує їх термонапружений стан. Найбільш термонапруженим є другий шар брекера. Визначено, що наявність рисунка на протекторі покращує умови відводу тепла від шини, в середньому на 30%, перш за все, за рахунок збільшення площі поверхні тепловіддачі. Ці дослідження підтверджують необхідність застосування універсальної форми рисунка протектора для шин аварійно-рятувальних автомобілів. В результаті досліджень встановлено, що навіть при дотриманні правил експлуатації і норм технічного обслуговування можливо підвищити надійність і безпеку руху аварійно-рятувальних автомобілів. На підставі досліджень для збільшення працездатного стану шин пропонується комплектувати аварійно-рятувальні автомобілі шинами спеціальної конструкції. Обґрунтовані пропозиції по конструкції шин аварійно-рятувальних автомобілів. Отримані дані збільшать надійність та безпеку руху аварійно-рятувальних автомобілів при слідуванні до місця виклику.

 

Посилання

  1. Behnke, R., Kaliske, M. (2015). Termo-mechanically coupled investigation of steady state rolling tires by numerical simulation and experiment // International journal of non-linear mechanics, 68, 101–131. doi:10.1016/j.:ijnonlinmec.2014.06.014
  2. Integrated dynamics and efficiency optimizati on for EVs Vehicle dynamics international (2019), 38–39. doi:10.1002/asjc.1686
  3. Pozhydayew, S. (2018). Utochnennya ponyattya momentu syly u mekhanitsi [Clarification of the conceht of forse moment in mechanics] Avtoshlyakhovyk Ukrainy. I.P., 21–25. doi:10.30977/AT.2219-8342.2019.44.0.21
  4. Wheel slip control for decentralized EVs. Vehicle dynamics international – 2019, 24–26.
  5. Larin, O., Vinogradov, S., Kokhanenko, V., Pat. 82321 Ukraine, IPC (2013.01) B60C 23/00. Adjustment for temperature adjustment in pneumatic tires / applicant and patent holder of the National University of Civil Society of Ukraine. № u201302439, application no. 02/26/2013; publ. 07.25.2013, Bul, № 14.
  6. Burennikov, Y., Dobrovolsky, A. (2011). Business processes perfection of small motor transport enterprises // Bulletion of the polytechnic institute of Iasi. To-mul LVII (LXI), 2, 237–243. doi:10.1080/00207543.2011.645954
  7. Dong-Hyun, Y., Beom-Seon, J., Ki-Ho, Y. (2017). Nonlinear finite element analysis of failure modes and ultimate strength of flexible pipes. Marine Structures, 54, 50–72. doi:10.1016/j.marstruc.2017.03.007
  8. Haseeb, A., Jun, T., Fazal, M., Masjuki, H. (2011). Degradation of physical properties of different elastomers upon exposure to palm biodiesel. Energy, 36, 3, 1814–1819. doi:10.1016/j.energy.2010.12.023
  9. Cho, J., Yoon, Y. (2016). Large deformation analysis of anisotropic rubber hose along cyclic path by homogenization and path interpolation methods. Journal of Mechanical Science and Technology, 30, 2, 789–795. doi:10.1007/s.12206–016–0134–5
  10. Larin, O. (2015). Probabilistic of fatigue damage accumulation in rubberlike materials. Strength of Materials, 47, 6, 849–858. doi:10.1007/s11223–015–9722–3
  11. Jacobson B. (2016). Vehicle dynamics. Chalmers University of Technology.