Geometric modeling of pneumatic shaped surfaces of rotation, reinforced by winding thread

 

Kutsenko Leonid

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0003-1554-8848

 

Rudenko Svetlana

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0002-5688-0639

 

Kalynovskyi Andrii

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-1021-5799

 

Polivanov Oleksandr

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0002-6396-1680

 

Sukharkova Olena

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0003-1033-4728

 

DOI: https://doi.org/10.52363/2524-0226-2024-39-15

 

Keywords: meridian of the surface of revolution, average curvature of the surface, corrugated surface of revolution, reinforcement by thread winding

 

Аnnotation

 

A scheme is proposed for calculating the geometric forms of the family of meridians of a rubber pneumatic shaped surface of rotation depending on the function of changing the average curvature along the axis of this surface. It is proposed to strengthen the resulting shaped surface of rotation by winding the thread along the geodesic curves of the found surface. A method has been developed for determining the approximate shape of the elements of the family of meridians of the pneumatic surface of rotation. In addition, constructed surfaces of revolution, strengthened by winding threads along their geodesic lines, depending on the function of changing the curvature of the meridian. As a result, images of geodesic curves on shaped surfaces of revolution were obtained. The construction of a geodesic thread winding on a corrugated surface is generalized for the case of a sawtooth-shaped meridian. It is advisable to model a pneumatic surface based on calculating its average curvature. Since the value of the average curvature of the interface between two balanced physical media is proportional to the difference in pressure values in these media. By varying the average curvature of the surface, you can choose the amount of pressure that the pneumatic product will withstand. Approximate descriptions of the shape of the meridian of the shaped surface of revolution are obtained by solving the direct and inverse problems. The parameters of geodetic winding are calculated depending on the given meridian curvature function. The construction of geodesic winding of a thread on a corrugated surface is generalized for the case of a sawtooth-shaped meridian. For practice, the studies conducted are useful and important, since they provide calculations of rational pneumatic products intended for use during emergency rescue operations.

 

References

 

  1. Hidravlichne ta pnevmatychne avariino-riatuvalne obladnannia z prynalezhnostiamy. WEBER-HYDRAULIK UKRAINE, 41. Available at: https://www.weber-rescue.com.ua/wp-content/uploads/2020/10/Katalog-2020.pdf
  2. Larin, O. (2005). Pozhezhna ta avariino-riatuvalna tekhnika. Istoriia, sohodennia, mynule : monohrafiia. Kharkiv : NUTZU, 160.
  3. Borysenko, O. (1995). Dyferentsialna heometriia i topolohiia. Kharkiv: Osnova, 304.
  4. Zadachyn, V., Koniushenko, I. (2014). Chyselni metody: navch. posib. Kharkiv: KhNEU im. S. Kuznetsia, 180.
  5. Malyshko, P., Orlov, M. (2023). Konstruiuvannia baloniv dlia zberihannia stysnenoho hazu. Zbirnyk tez dopovidei: Zb. tez dop. 76-yi vseukr. naukovo-prakt. student. onlain-konf. «Nauk. zdobutky studentiv u doslidzh. tekhn. ta bioenerh. system pryrodokorystuvannia: konstruiuvannia ta dyzain». F-t, m. Kyiv, 63–64.
  6. Mladenov, I., Hadzhilazova, M. (2012). Geometry of the anisotropic minimal surfaces. Analele Universitatii "Ovidius" Constanta - Seria Matematica, 20(2), 79–88. Available at: https://doi.org/10.2478/v10309-012-0042-3
  7. Perdomo, O. (2011). The treadmillsled of a curve. arXivLabs. Available at: https://arxiv.org/abs/1105.3460v1
  8. Kenmotsu, K. (1980). Surfaces of revolution with prescribed mean curvature. Tohoku Mathematical Journal, 32, 1, 147–153. Available at: https://doi.org/10.2748/tmj/1178229688
  9. Hoffmann, T. (1998). Discrete Rotational CMC Surfaces and the Elliptic Billiard. In: Hege, HC., Polthier, K. (eds) Mathematical Visualization. Springer, 117–124. Available at: https://doi.org/10.1007/978-3-662-03567-2_9
  10. Cho, J., Leschke, K., Ogata, Y. (2022). Generalised Bianchi permutability for isothermic surfaces. Annals of Global Analysis and Geometry, 61, 799–829. Available at: https://doi.org/10.1007/s10455-022-09833-5
  11. Chao, Y., Shen, L., Liu, M. (2021). Mechanical characteristic and analytical model of novel air spring for ergonomic mattress. Mechanics & Industry, 22, 37. Available at: https://doi.org/10.1051/meca/2021035
  12. de Melo, F., Pereira, A., Morais, A. (2018). The Simulation of an Automotive Air Spring Suspension Using a Pseudo-Dynamic Procedure. Applied Sciences, 8, 7, 1049. Available at: https://doi.org/10.3390/app8071049
  13. Renka, R. (2015). A Simple and Efficient Method for Modeling Constant Mean Curvature Surfaces. SIAM Journal on Scientific Computing, 37, 4, A2076–A2099. Available at: https://doi.org/10.1137/140972275
  14. Pneumatic Artificial Muscles.Available at: https://softroboticstoolkit.com/book/export/html/168891
  15. Al-Ibadi, A., Nefti-Meziani, S., Davis, S. (2018). Active Soft End Effectors for Efficient Grasping and Safe Handling. IEEE Access, 6, 23591–23601. Available at: https://doi.org/10.1109/access.2018.2829351
  16. Du, H., Liu, W., Bian, X., Xiong, W. (2022). Energy-Saving for Industrial Pneumatic Actuation Systems by Exhausted Air Reuse Based on a Constant Pressure Elastic Accumulator. Sustainability, 14, 6, 3535. Available at: https://doi.org/10.3390/su14063535
  17. Paragoda, T. (2014). Constant Mean Curvature Surfaces of Revolution versus Willmore Surfaces of Revolution: A Comparative Study with Physical Applications. Texas Tech University, 42.
  18. Ciric, M. (2009). Notes on constant mean curvature surfaces and their graphical presentation. Filomat, 23, 2, 97–107. Available at: https://doi.org/10.2298/fil0902097c
  19. Hoque, M., Petersen, E., Fang, X. (2023). Effect of Material Properties on Fiber-Shaped Pneumatic Actuators Performance. Actuators, 12, 3, 129.Available at: https://doi.org/10.3390/act12030129
  20. Pan, H., Choi, Y.-K., Liu, Y., Hu, W., Du, Q., Polthier, K., et al. (2012). Robust modeling of constant mean curvature surfaces. ACM Transactions on Graphics, 31, 4, 1–11. Available at: https://doi.org/10.1145/2185520.2185581
  21. Arnal, A., Lluch, A., Monterde, J. (2008). Triangular Bґezier approximations to Constant Mean Curvature surfaces Conference: Computational Science - ICCS 2008, 8th International Conference, Kraków, Poland, Proceedings, Part II. doi:10.1007/978-3-540-69387-1_11
  22. Ball, E., Garcia, E. (2016). Effects of Bladder Geometry in Pneumatic Artificial Muscles. Journal of Medical Devices, 10, 4. Available at: https://doi.org/10.1115/1.4033325
  23. Pylypaka, S., Korovina, I. (2010). Konstruiuvannia poverkhon obertannia staloi serednoi kryvyny. Materialy III Vseukrainskoi naukovo-praktychnoi konferentsii «Perspektyvy rozvytku ahropromyslovoho kompleksu v Poliskomu rehioni Ukrainy». Nizhyn: Milanik, 35–43.
  24. Rudenko, S. (2013). Poverkhni obertannia, u yakykh znachennia serednoi kryvyny blyzki do nulia. Prykladna heometriia ta inzhenerna hrafika. K.: Budivelnyk, 91, 240–244.
  25. Rudenko, S. (2013). Heometrychne modeliuvannia fasonnykh poverkhon obertannia, zmitsnenykh namotuvanniam nytky: avtoref. dys. kand. tekhn. nauk : 05.01.01. Kyiv, 24.
  26. Kutsenko, L., Rudenko, S. (2011). Poverkhni obertannia zi zminnoi uzdovzh osi kryvynoiu merydianiv ta yikh zmitsnennia shliakhom namotuvannia kevlarovoi nytky. Kompiuterno-intehrovani tekhnolohii: osvita, nauka, vyrobnytstvo. Lutsk: LDTU, 6, 148–153.