Simulation of the work of the magnetic contact thermal fire alarm

 

Durieiev Viacheslav

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0002-7981-6779

 

Khrystych Valerii

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-5900-7042

 

Bondarenko Serhiy

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0002-4687-1763

 

Maliarov Murat

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0002-4052-7128

 

Prokofiev Mykhailo

Donetsk National University named after Vasyl Stus

https://orcid.org/0000-0001-9388-3735

 

DOI: https://doi.org/10.52363/2524-0226-2024-39-7

 

Keywords: fire detector, sensitive element, mathematical model, inertia, activation time, activation temperature

 

Аnnotation

 

A mathematical model of the magnetic contact thermal detector was developed, taking into account the dependence of the magnetic properties of the contacts of the sensitive element on the structure and type of its contacts. Equations for determining the dynamic parameters of the detector were obtained, and a parametric study of the triggering characteristics was performed. An analysis of sources was carried out, which made it possible to develop mathematical models of detectors with detailed consideration of the typical structure of the material of sensitive elements in order to obtain the dynamic parameters of the detector and determine the optimal parameters of its activation. The model of the detector is a set of equations that determine the conditions of heat exchange with the environment and take into account the dependence of the magnetic properties of the contacts of the sensitive element of a typical structure when the temperature of the environment changes during non-stationary heat exchange. The result of modeling the detector’s operation is dynamic equations in relative variables and dynamic parameters of the detector’s operation, which allow determining the parameters of the detector’s operation, taking into account the typical contact structure of the sensitive element. The dynamics equations represent a classical positional link of the first order and are convenient for carrying out studies of detector operation, calculations of dynamic parameters and parametric calculations of actuation parameters. Dynamic equations have been developed to determine and study the dynamic parameters of the magnetic contact detector. The type and structure of the contact material of the sensitive element of the detector is taken into account. The results of comparative calculations deviate from the experimental data by up to 5 %. The performed simulation of the detector and the obtained dynamics equations allow us to provide practical recommendations for the selection of technical parameters for promising models of magnetic contact detectors.

 

References

 

  1. Carter, C. B. (2007). Ceramic Materials: Science and Engineering. Springer, 716. doi: 10.1007/978-0-387-46271-4
  2. Lu, H., Zhu, Y., Hui, J. G. (2007). Measurement and modeling of thermal effects on magnetic hysteresis of soft ferrites. IEEE Transactions on Magnetics, l, 43(11), 3953–3960. doi: 10.1109/tmag.2007.904942
  3. Kachniarz, М., Salach, J, Szewczyk, R., Bieńkowski, A., Korobiichuk, I. (2015). Investigation of temperature effect on magnetic characteristics of manganese-zinc ferrites. Eastern-European Journal of Enterprise Technologies, 6/5(78), 17–21. doi: 10.15587/1729-4061.2015.55410
  4. Martinson, K., Belyak, V., Sakhno, D., Chebanenko, M., Panteleev, I. (2022). Mn-Zn Ferrite Nanoparticles by Calcining Amorphous Products of Solution Combustion Synthesis: Preparation and Magnetic Behavior. International Journal of Self-Propagating High-Temperature Synthesis, 31, 17–23. doi: 10.3103/S106138622201006X
  5. Nairan, A., Khan, M., Khan, U., Iqbal, M., Riaz, S., Naseem, S. (2016). Temperature-Dependent Magnetic Response of Antiferromagnetic Doping in Cobalt Ferrite Nanostructures. Nanomaterials, 73. doi: org/10.3390/nano6040073
  6. Thanh, T. D., Manh, D. H., Phuc, N. X. (2015). Deviation from Bloch’s T3/2 Law and Spin-Glass-Like Behavior in La0.7Ca0.3MnO3 Nanoparticles. J Supercond Nov Magn, 28, 1051–1054. doi: 10.1007/s10948-014-2869-5
  7. Ullah, S., Firoz, U., Momin, A., Hakim, M. (2021). Effect of V2O5 addition on the structural and magnetic properties of Ni–Co–Zn ferrites. Published by IOP Publishing Ltd. doi: 10.1088/2053-1591/abd865
  8. Kumar, P., Mandal, К. (2007). Effect of spatial confinement on spin-wave spectrum: Low temperature deviation from Bloch’s T3/2 law in Co nanoparticles, 11. doi: 10.48550/arXiv.cond-mat/0701152
  9. Cullity, B. D., Graham, C. D. (2009). Introduction to Magnetic Materials, Second Edition. Copyright. Тhe Institute of Electrical and Electronics Engineers, 544. Available at: http://ndl.ethernet.edu.et/bitstream/123456789/31331/1/B.%20D.%20Cullity.pdf
  10. Cojocaru, S. (2011). Magnon gas and deviation from the Bloch law in a nanoscale Heisenberg ferromagnet. Philosophical Magazine, 1–15. Available at: https://www.researchgate.net/publication/233077658_Magnon_gas_and_deviation_from_the_Bloch_law_in_a_nanoscale_Heisenberg_ferromagnet
  11. Durieiev, V. O., Khrystych, V. V., Bondarenko, S. M., Maliarov, M. V., Korniienko, R. V. (2023). Matematychna model mahnitnokontaktnoho teplovoho pozhezhnoho spovishchuvacha. Problemy nadzvychainykh sytuatsii, 1(37), 31–43. Available at: http://pes.nuczu.edu.ua/images/arhiv/37/3.pdf ISSN 2524-0226
  12. Zabara, S. (2015). Modelyuvannya sistem u seredovishchі MATLAB. Unіversitet Ukraїna, 137. Available at: https://www.yakaboo.ua/modeljuvannja-sistem-u-seredovischi-matlab.html