Друк

Results of the heating of reinforced concrete slabs with a corrugated profile during the thermal effect of fire

 

Stepanenko Vitalii

National University of Civil Protection of Ukraine

https://orcid.org/0009-0001-0839-197X

 

Nuianzin Oleksandr

National University of Civil Protection of Ukraine

https://orcid.org/0000-0003-2527-6073

 

Perehin Alina

National University of Civil Protection of Ukraine

https://orcid.org/0000-0003-2062-5537

 

Kryshtal Dmitro

National University of Civil Protection of Ukraine

http://orcid.org/0000-0002-1766-3244

 

Kopytin Dmitro

National University of Civil Protection of Ukraine

http://orcid.org/0000-0003-2505-9394

 

DOI: https://doi.org/10.52363/2524-0226-2024-40-9

 

Keywords: experiment, fire, fragment, furnace, reinforced concrete, steel, steel-reinforced concrete, stove, temperature, reproducibility

 

Аnnotation

 

Three experiments were conducted on heating fragments of reinforced concrete slabs with a corrugated profile in a small-sized installation and the results of the thermal effect of fire at control points were analyzed for the possibility of their use when assessing the fire resistance of the specified building structures. The methodology and results of experiments on heating frag-ments of reinforced concrete slabs with a corrugated profile and the study of the temperature on heated and unheated surfaces, in the reinforcement layer and at control points were substantiated. Conducting the above-mentioned experiments in a small-sized installation for the study of the thermal effect of fire on building structures without mechanical load consisted in the effect of the standard temperature regime of fire with one-sided heating. To measure the temperature in the furnace and in the investigated fragments, thermocouples were used, which can be used to measure temperatures in the range from 0 to 1300 ℃ and thermistors to measure temperatures in the range from -30 to 300 ℃. According to the conducted experiment, there was a uniform distribution of temperatures on the heating surface of the studied small fragment, the maximum temperature reached was 760 ℃. Maximum temperatures: at control points it was 145 ̊℃; on the unheated surface it was 45 ℃, and at the level of the armature – 350 ℃. Studies are limited to 60 minutes, since the temperature can then approach the stationary one. The adequacy of the experimental data was confirmed: the relative deviation did not exceed 4.1 %, and the calculated adequacy criteria (Fisher, Student and Cochrane) were below the critical value. The initial data of the experimental study can serve as the basis for reproducing the temperature field inside the slab.

 

References

 

  1. Nuianzin, O. M. (2023). Rozvytok naukovykh osnov otsinyuvannya vohnestiykosti zalizobetonnykh budivelʹnykh konstruktsiy z vykorystannyam malohabarytnykh modulʹnykh vohnevykh pechey. Dys. ... d-r. tekhn. nauk : 21.06.02, Lʹviv: Lʹvivsʹkyy derzhavnyy universytet bezpeky zhyttyediyalʹnosti, 418. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/20657
  2. Perehin, A. V. (2024). Udoskonalennya eksperymentalʹno-rozrakhunkovoho metodu otsinyuvannya mezhi vohnestiykosti nesuchykh zalizobetonnykh stin. Dys. ... d-r filosofiyi : 261, Cherkasy: CHIPB im. Heroyiv Chornobylya NUTSZ Ukrayiny, 162. Available at: https://chipb.dsns.gov.ua/upload/1/9/9/7/2/4/9/disertaciia-alini-peregin-udoskonalennia-eksperimentalno-rozraxunkovogo-metodu-ociniuvannia-mezi-vognestiikosti-nesucix-zalizobetonnix-stin.pdf
  3. DSTU EN 1363-1:2023. (2023). Vyprobuvannya na vohnestiykistʹ. Chastyna 1. Zahalʹni vymohy (EN 1363-1:2020, IDT).
  4. DBN V.1.1-7-2016. (2016). «Pozhezhna bezpeka obʺyektiv budivnytstva. Zahalʹni vymohy».
  5. DSTU B V.1.1-20:2007. (2007). Zakhyst vid pozhezhi. Perekryttya ta pokryttya. Metod vyprobuvannya na vohnestiykistʹ (EN 1365-2:1999, NEQ).
  6. Nuianzin, O., Kozak, A., Yanishevskyi, V., Kryshtal, V. (2024). Study of the thermal effect of fire on fragments of reinforced concrete columns based on the results of experimental tests. Strength of Materials and Theory of Structures, (112), 202–208.
  7. Perehin, A., Nuianzin, O. (2021). Etapy stvorennya prototypu vohnevoyi ustanovky dlya vyznachennya temperaturnykh rozpodiliv malohabarytnykh frahmentiv zalizobetonnykh konstruktsiy. Nadzvychayni sytuatsiyi: poperedzhennya ta likviduvannya, 5(2), 75–82. Available at: http://repositsc.nuczu.edu.ua/
    handle/123456789/21262
  8. Nuianzin, O., Borysova, A. (2023). Rozrakhunkove otsinyuvannya mezhi vohnestiykosti zalizobetonnoyi plyty za rezulʹtatamy vohnevykh vyprobuvanʹ bez mekhanichnoho navantazhennya. Civil security: Public administration and crisis management, (1(2)), 25–40. http://repositsc.nuczu.edu.ua/handle/123456789/20741
  9. Storozhenko, L. I., Ivanyuk, A. V., Klestov, O. V. (2012). Eksperymentalʹni doslidzhennya stalezalizobetonnykh plyt z armuvannyam reber vertykalʹnymy stalevymy lystamy. Available at: https://reposit.nupp.edu.ua/handle/PoltNTU/8468
  10. Nekora, V. S., Sidney, S. O., Nekora, O. V., Shnal, T. M. (2022). Povedinka stalezalizobetonnoyi plyty pry pozhezhi. Redaktsiyna kolehiya, 34. Available at: https://nuczu.edu.ua/images/topmenu/science/konferentsii/2022/2.pdf#page=35