Мodeling the deployment of rod structures as multilink pendulums under microgravity conditions
Kalynovskyi Andrii
National University of Civil Protection of Ukraine
https://orcid.org/0000-0002-1021-5799
Kutsenko Leonid
National University of Civil Protection of Ukraine
http://orcid.org/0000-0003-1554-8848
Sukharkova Olga
National University of Civil Protection of Ukraine
http://orcid.org/0000-0003-1033-4728
Nazarenko Sergii
National University of Civil Protection of Ukraine
https://orcid.org/0000-0003-0891-0335
Diachkov Oleksandr
National University of Civil Protection of Ukraine
http://orcid.org/0000-0002-7978-0024
Hrynko Yurii
National University of Civil Protection of Ukraine
http://orcid.org/0000-0003-1957-025X
DOI: https://doi.org/10.52363/2524-0226-2025-41-11
Keywords: core construction, process of opening in space, multi-link pendulum, Lagrange equation
Аnnotation
A new approach to modeling the transformation of rod structures in microgravity by investigating elements of their frameworks, represented as multi-link pendulums. A geometric model is presented for the deployment of such structures under the influence of pulsed thrusts from jet engines mounted at the endpoints of the links. The deployment mechanism is based on initiating inertial motion without continuous external control after a brief impulse application. The dynamics of the deployment process are described using Lagrange’s equations of the second kind, with particular emphasis on adapting the formulation to microgravity conditions, where potential energy can be considered negligible. This enables accurate modeling of structure deployment driven solely by kinetic energy, without further external control. As a result of the impulse action, the pendulum deploys by inertia, justifying the use of the term «inertial deployment method» for the frame. Mathematical models and a computer animation method are developed to predict the time evolution of link positions and to determine the fixation moment («stop code») for achieving the desired structure geometry. The influence of impulse magnitude errors on deployment accuracy is studied, and acceptable tolerance limits are established to maintain a satisfactory configuration. Test examples are provided for the deployment of double-link and four-link pendulums, as well as special configurations such as the Magdeburg pendulum and the Thomson-Tait pendulum. The obtained results are well-suited for animation to visualize the dynamics of rod structure formation—for example, illustrating the deployment of support frameworks for solar mirrors or space antennas. The proposed methods allow for the simplification of deployment technologies for large space objects, eliminating the need for complex electromechanical drives and thus reducing the mass and cost of space missions.
References
1 Alpatov, A. P., Horbulyn, V. P. (2013). Kosmycheskye platformy dlia or-bytalnykh promyshlennykh kompleksov: problemy i perspektivy. Visnyk NAN Ukrainy, 12, 26–38.
- Alpatov, A. P., Belonozhko, P. A., Belonozhko, A. A., Vytushkyn, A. A. (2007). Bolshye otrazhaiushchye poverkhnosty v kosmose. Antenny sputnykoi sviazy. Systemni tekhnolohii, 3(50),73–87.
- Alpatov, A. P., Belonozhko, P. A., Belonozhko, A. A., Vytushkyn, A. A. (2007). Bolshye otrazhaiushchye poverkhnosty v kosmose. Radoteleskopy, solnech-nye kontsentratory, ploskye otrazhately. Systemni tekhnolohii, 3(50), 88–101.
- Hoyt, R. (2015). SpiderFab. Architecture for On-Orbit Manufacture of Large Aperture Space Systems. FISO Briefing, 33.
- Alpatov, A. P. (2013). Dynamika perspektyvnykh kosmichnykh aparativ. Visnyk NAN Ukrainy, 7, 6–13.
- Udwadia, F. E., Koganti, P. B. (2015). Dynamics and control of a multi-body planar pendulum. Nonlinear Dynamics, 82, 1–2, 1059–1059. doi: 10.1007/s11071-015-2362-0
- Lope, A. M., Machado, J. A. (2017). Dynamics of the N-link pendulum: a fractional perspective. International Journal of Control, 90, 6, 1192–1192.
- Fritzkowski, P., Kaminski, H. (2008). Dynamic of a rope as a rigid multibody system. Journal of mechanics of materials and structures, 3, 6, 1059–1075.
- Szuminski, W. (2014). Dynamics of multiple pendula without gravity. Chaot-ic Modeling and Simulation, 57–67. Available at: https://www.researchgate.net/
publication/285143816_Dynamics_of_multiple_pendula_without_gravity
- Pisculli, A., Felicetti, L., Gasbarri, P., Palmerini, G B., Sabatini, M. (2013). Deployment analysis and control strategies of flexible space manipulators, in: Pro-ceedings of the International Astronautical Congress. China. Available at: https://www.researchgate.net/publication/288131553_Deployment_analysis_and_control_strategies_of_flexible_space_manipulators
- Sakovsky, M., Pellegrino, S., Mallikarachchi, H. M. Y. C. (2016). Folding and Deployment of Closed Cross-Section Dual-Matrix Composite Booms. 3rd AIAA Spacecraft Structures Conference. doi:10.2514/6.2016-0970
- Ma, X., An, N., Cong, Q. et al. (2024). Design, modeling, and manufactur-ing of high strain composites for space deployable structures. Communications Engi-neering, 78. doi:10.1038/s44172-024-00223-2
- Deployable Perimeter Truss with Blade Reel Deployment Mechanism. (2016). NASA’s Jet Propulsion Laboratory, Pasadena, California.Tuesday. Available at: https://www.techbriefs.com/component/content/article/tb/techbriefs/mechanics-and-machinery/24098
- Shamakhanov, V. K., Khoroshylov, S. V. (2025). Osoblyvosti stvorennia ta vykorystannia kosmichnykh strilopodibnykh konstruktsii, shcho transformuiutsia. Journal of Rocket-Space Technology, 34(1), 3–20. doi: 10.15421/4525015
- Jennings, A. L., Black, J., Allen, C. (2013). Empirically Bounding of Space Booms with Tape Spring Hinges. Shock and Vibration, 20, 503–518. doi:10.3233/SAV-130764
- Liu, T.-W., Bai, J.-B., Fantuzzi, N. (2022). Folding behavior of the thin-walled lenticular deployable composite boom: Analytical analysis and many-objective optimization. Mechanics of Advanced Materials and Structures, 30, 11, 2221–2239. doi: 10.1080/15376494.2022.2053766
- Yang, H., Guo, H., Wang, Y., Feng, J., Tian, D. (2020). Analytical solution of the peak bending moment of an M boom for membrane deployable structures. In-ternational Journal of Solids and Structures, 206, 236–246. doi: 10.1016/j.ijsolstr.
2020.09.005
- Martınez-Alfaro, H. Obtaining the dynamic equations, their simulation, and animation for N pendulums using Maple. Available at: https://www.researchgate.
net/publication/228781742_Obtaining_the_dynamic_equations_their_simulation_and_animation_for_n_pendulums_using_Maple
- Xu, Y., Guan, Fu-ling, Zheng, Y., Zhao, M. (2012). Kinematic Analysis of the Deployable Truss Structures for Space Applications. J. Aerosp. Technol. Manag., Sao Jose dos Campos, 4, 4, 453–462. doi: 10.5028/jatm.2012.04044112
- Hoyt, R., Cushing, J., Slostad, J. (2013). SpiderFab: Process for On-Orbit Construction of KilometerScale Apertures. NASA Goddard Space Flight Center 8800 Greenbelt Road Greenbelt, MD 20771, 53.
- Kutsenko, L., Shoman, O., Semkiv, O., Zapolsky, L., Adashevskay, I., Danylenko, V., Semenova-Kulish, V., Borodin, D., Legeta, J. (2017). Geometrical modeling of the inertial unfolding of a multi-link pendulum in weightlessness. East-ern-European Journal of Enterprise Technologies, 6/7(90), 42–50.
- Kutsenko, L. M. (2017). Iliustratsii do heometrychnoho modeliuvannia in-ertsiinoho rozkryttia bahatolankovoho maiatnyka u nevahomosti. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/4868
- Kutsenko, L., Semkiv, O., Zapolskiy, L., Shoman, O., Kalinovskiy, A., Pik-sasov, M., Adashevska, I., Shelihova, І., Sydorenko, О. (2018). Geometrical model-ing of the process of weaving a cloth in weightlessness using the inertial unfolding of dual pendulum. Eastern-European Journal of Enterprise Technologies, 1/7 (91), 37–46. doi: 10.15587/1729-4061.2017.114269
- Kutsenko, L. (2018). Iliustratsii do heometrychnoho modeliuvannia protsesu rozkryttia sterzhnevykh konstruktsii u nevahomosti. Available at: http://repositsc.
nuczu.edu.ua/handle/123456789/6335
- Kutsenko, L., Semkiv, O., Zapolskiy, L., Shoman, O., Ismailova, N., Vasy-liev, S., Adashevska, I., Danylenko, V., Pobidash, A. (2018) Geometrical modeling of the shape of a multilink rod structure in weightlessness under the influence of pulses on the end points of its links. Eastern-European Journal of Enterprise Technol-ogies, 2/7(92), 44–58. doi: 10.15587/1729-4061.2018.126693
- Chaotic Pendulum. Harvard Natural Sciences Lecture Demonstrations. Available at: https://sciencedemonstrations.fas.harvard.edu/presentations/chaotic-pendulum
- Space_Structure_Systems_Laboratory. Self deployable truss, 2016. YouTube. URL: https://www.youtube.com/watch?v=sH7NHZwPzMM
- Qi, X., Deng, Z, Li, B, Liu, R, Guo, H. (2013). Design of Large Deployable Networks Constructed by Myard Linkages. CEAS Space Journal, 5, 147–155. doi: 10.1007/s12567-013-0036-7
- D. ter Haar. (1971). Elements of Hamiltonian mechanics Pergamon Press Second Edition University Reader in Theoretica 1 Physics. Oxford, 212.