Ensuring the balance of properties of floating systems to slow down the evaporation of hazardous liquids

 

Dmytro Tregubov

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0003-1821-822X

 

Oleksandr Kireev

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0002-8819-3999

 

Larisa Trefilova

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0001-8939-6491

 

Maryna Chyrkina

National University of Civil Defenсe of Ukraine

https://orcid.org/0000-0002-2060-9142

 

Ilgar Firdosi Dadashov

Academy of the Ministry of Emergency Situations of the Republic of Azerbaijan

https://orcid.org/0000-0002-1533-1094

 

DOI: https://doi.org/10.52363/2524-0226-2023-37-19

 

Keywords: evaporation, burnout, mass burnup rate, insulation, cooling, buoyant agent, foam glass, gel

 

Аnnotation

 

The means properties contributions ratio designed to prevent the liquids evaporation and ensure safe vapor concentrations, depending on the values of characteristic temperatures and water solubility, was established. It is proven that limiting the vapor-gas cloud size is achieved by means of the liquid surface insulation or cooling. It is shown that only floating closed-pore solid materials (f.e., foam glass) and solidifying foams can provide a prolonged effect of such means. Attention is focused on specified means disadvantages, such as the low insulating ability of the foam glass and insignificant cooling ability, and for foam that hardens – also the flammability. The existence of lower coefficients of the evaporation retardation by the gel for liquids with greater water solubility was established experimentally. Experimentally, it was established that wet foam glass has a greater cooling capacity than dry foam glass by 5–6 times, with a close dependence for cooling polar and non-polar liquids. It is shown that the cooling effect of the feeding foam glass is smaller for liquids with a vaporization higher heat, and this difference is approximately the same for the cases of the feeding both dry and wet foam glass. It was found that for low-boiling non-polar liquids, the evaporation insulation is more effectively achieved by using an insulating system based on dry foam glass with a gel layer, and for hard-boiling liquids – provided that the cooling system is supplied in the form of the wet foam glass with an additional effect in the form of the air space phlegmatization above the liquid surface with water vapor. It has been proven that reduction of the burning mass rate and the fire extinguishing effect achievement by applying the foam glass layer on the combustible liquid surface occurs in a similar way for liquids with close molar masses and not flash temperatures.

 

References

 

  1. Semichaevsky, S., Yakimenko, M., Osadchuk, M. (2021). Regarding emergency spillage of flammable liquids. Vcheni zapysky TNU im. V.I. Vernadsʹkoho. Tekhnichni nauky, 32(71), 3, 219–225. doi: 10.32838/2663-5941/2021.3/33
  2. Saravanan, R., Karunanithi, T., Govindarajan, L. (2007). A Risk Assessment Methodology for Toxic Chemicals Evaporation from Circular Pools. Appl. Sci. Environ. Manage, 1, 91–100. doi: 10.4314/jasem.v11i1.46841
  3. Loboichenko, V., Strelets, V., Gurbanova, M., Morozov, A., Kovalov, P., Shevchenko, R., Kovalova, T., Ponomarenko, R. (2019). Review of Environmental Characteristics of Fire Extinguishing Substances of Different Composition used for Fires Extinguishing of Various Classes. Journal of Engineering and Applied Sciences, 14, 5925–5941. doi: 10.36478/jeasci.2019.5925.5941
  4. Kireev, A., Tregubov, D., Safronov, S., Saveliev, D. (2020). Study Insulating and Cooling Properties of the Material on the Basis of Crushed Foam Glass and Determination of its Extinguishing Characteristics with the Attitude to Alcohols. Materials Science Forum, 1006, 62–69. doi: 10.4028/www.scientific.net/msf.1006.62
  5. Borovykov, V. (2015). Hasinnya pozhezh u rezervuarakh dlya zberihannya nafty ta naftoproduktiv. Pozhezhna ta tekhnohenna bezpeka, 11(26), 28–29. URL: http://eom.com.ua/index.php/topic,16176.msg137533.html#msg137533
  6. Glassman, I., Yetter, R. A. (2014). Combustion. London: Elsevier. doi:10.1016/C2011-0-05402-9
  7. Korolov,, Kovalyshyn, V., Shtajn, В. (2017). Analysis of methods for extinguishing fires in reservoirs with oil products by a combined method. ScienceRise, 6(35), 41–50. doi: 10.15587/2313-8416.2017.104613
  8. Balanyuk, V. M., Kozyar, N. M., Garasymuyk, O. I. (2016). Study of fire–extinguishing efficiency of environmentally friendly binary aerosol-nitrogen mixtures. Eastern-european journal of enterprise technologies. Technical science, 3/10(71), 4–12. doi: 15587/1729-4061.2016.72399
  9. Balanyuk, V., Kravchenko, A., Harasymyuk, O. (2021). Reducing the thermal radiation intensity at the sublayer extinguishing of alcohols by ecologically acceptable aerosols. Eastern-european journal of enterprise technologies. Technical science, 1/10(109), 37–44. doi: 10.15587/1729-4061.2021.225216
  10. Trehubov, D. H., Tarakhno, O. V. (2013). Rozbavlennya paropovitryanoho prostoru paroyu nehoryuchoho komponentu. Problemy pozharnoy bezopasnosty, 33, 183–187. Retrieved from: http://repositsc.nuczu.edu.ua/handle/123456789/3205
  11. Pietukhov, R., Kireev, A., Tregubov, D., Hovalenkov, S. (2021). Experimental Study of the Insulating Properties of a Lightweight Material Based on Fast-Hardening Highly Resistant Foams in Relation to Vapors of Toxic Organic Fluids. Materials Science Forum, 1038, 374–382. doi: 10.4028/www.scientific.net/msf.1038.374
  12. Un procedimiento para la preparacion de un gel de poliacrilato sodico. Pat. ES 8901936: A62C 5/033, C09K 21/14, 2 018 370; Fecha de presentacion: 02.06.89; Fecha de publicacion del folleto de patente: 01.04.91. Retrieved from: https://patents.google.com/patent/ES2545370T3/es
  13. Dadashov, I., Kireev, A., Kirichenko, I., Kovalev, A., Sharshanov, A. (2018). Simulation of the insulating properties of two-layer material. Functional materials, 25(4), 774–779. doi: 10.15407/fm25.04.774
  14. Eom, J. H., Kim, Y. W., Raju, S. (2013). Processing and properties of macroporous silicon carbide ceramics. Journal of Asian Ceramic Societies, 1(3), 220–242. doi: 10.1016/j.jascer.2013.07.003
  15. Dadashov, I. F., Kiryeyev, O. O., Trehubov, D. H., Tarakhno, O. V. (2021). Hasinnya horyuchykh ridyn tverdymy porystymy materialamy ta heleutvoryuyuchymy systemamy. Kh.: NUTSZU. Retrieved from: http://repositsc.nuczu.edu.ua/handle/123456789/14033
  16. Pub Chem. Compound summary. Retrieved from: https://pubchem.ncbi.nlm.nih.gov/
  17. Bubbico, R., Mazzarotta, B. (2016). Predicting Evaporation Rates from Pools. Chemical engineering transactions, 48, 49–54. doi: 3303/CET1648009
  18. Tregubov, D., Tarakhno, O., Deineka, V., Trehubova, F. (2022). Oscillation and Stepwise of Hydrocarbon Melting Temperatures as a Marker of their Cluster Structure. Solid State Phenomena, 334, 124–130. doi: 10.4028/p-3751s3
  19. Trehubov, D., Sharshanov, A., Sokolov, D., Trehubova, F. (2022). Forecasting the smallest super molecular formations for alkanes of normal and isomeric struc Problems of Emergency Situations, 35, 63–75. doi: 10.52363/2524-0226-2022-35-5
  20. Doroshenko, I. Yu. (2017). Spectroscopic study of cluster structure of n-hexanol trapped in an argon matrix. Low Temperature Physics, 3(6), 919–926. doi: 10.1063/1.4985983
  21. Pietukhov, R., Kireev, A., Slepuzhnikov, E., Chyrkina, M., Savchenko, A. (2020). Lifetime research of rapid-hardening foams. Problems of Emergency Situations, 1(31), 226–223. doi: 10.5281/zenodo.3901986