Results of the determination of the fire extinguishing characteristics of light fluid materials when extinguishing ethanol

 

Ilham Balasalim Babashov

Academy of the Ministry of Emergency Situations of the Republic of Azerbaijan

http://orcid.org/0000-0002-3294-1767

 

Ilgar Firdosi Dadashov

Academy of the Ministry of Emergency Situations of the Republic of Azerbaijan

http://orcid.org/0000-0002-1533-1094

 

Oleksandr Kireev

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-8819-3999

 

Аleksandr Savchenko

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-1305-7415

 

Mahammad Elchin Musayev

Azerbaijan University of Architecture and Construction

http://orcid.org/0000-0002-8553-2617

 

DOI: https://doi.org/10.52363/2524-0226-2023-37-18

 

Keywords: ethanol, loose materials, foamglass, expanded perlite, expanded vermiculite, fireextinguishing properties

 

Аnnotation

 

Experimental studies of the previously proposed method of extinguishing polar liquids with the help of fire extinguishing agents based on light loose porous materials have been continued. An experimental method for determining the fire-extinguishing properties of a system based on light loose materials based on a laboratory model fire of class "B" has been developed. On its basis, the thicknesses of the layers of light loose materials, which lead to the extinguishing of ethanol and its mass burning rate at different layer thicknesses, are determined. Obtained results for dry and wetted materials. As a layer that ensures the buoyancy of the fire extinguishing system, crushed foam glass with a granule size of 1–1,5 cm was used. It was established that to ensure increased insulating properties, it is advisable to use expanded perlite with a granule size of 1,2±0,2 mm as the top layer and expanded lamellar vermiculite with 2x2,5 mm and 2x5 mm plates. It was established that wetting the upper layer of loose materials by supplying sprayed water leads to an increase in their fire-extinguishing properties. It is shown that water reduces the concentration of ethanol vapors above the layer of loose materials due to their adsorption. In order to increase the insulating and inhibitory properties, it was used to apply low-melting crys-talline hydrate Na2HPO4•12 H2O to the surface of crushed foam glass. This fire extinguishing system provided the lowest mass consumption of ethanol extinguishing of 6,99 kg/m2. An assessment of the financial costs of fire extinguishing agents for the proposed systems was carried out. A conclusion was made about the significant economic advantage of the system with crushed foam glass on the surface of which water was sprayed. Financial costs when applying this system are UAH 100 grn/m2. It is noted that such a system has a significant advantage in the simplicity of technical implementation due to the need to feed only one loose material.

 

References

 

  1. EN 1568-1:2018. Fire extinguishing media. Foam concentrates. Part 1: Specification for medium expansion foam concentrates for surface application to water-immiscible liquids.
  2. EN 1568-2:2018. Fire extinguishing media – Foam concentrates. Part 2: Specification for high expansion foam concentrates for surface application to water-immiscible liquids.
  3. EN 1568-3:2018. Foam concentrates. Part 3: Specification for low expansion foam concentrates for surface application to water-immiscible liquids /European standard.
  4. Borovikov, V. O., Chepovskiy, V. O., Slutska, O. M. Rekomendats, I. Yi. (2009). Schodo gasinnya pozhezh u spirtoshovischah, scho mіstyatet iloviy spirt. MNS UkraYini. K.:UkrNDIPB, 76.
  5. Ivanković, T. (2010). Surfactants in the environment. Arh. Hig. Rad. Toksikol, 61, 1, 95–110. doi: 10.2478/10004-1254-61-2010-1943
  6. Olkowska, E. (2011). Analytics of surfactants in the environment: problems and challenges. Chem. Rev, 111, 9, 5667–5700. doi: 1021/ cr100107g
  7. Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37, 1, 63–77. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062144705&partnerID=40&md5=36a1aa2ad65f6325a5bac590a1deb977
  8. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion ofa combustible charge. Eastern-European Journal of Enterprise Technologies, 6, 10–90, 11–16. doi: 15587/1729-4061.2017.114504
  9. Semko, A., Beskrovnaya, M., Vinogradov, S., Hritsina, I., Yagudina, N. The usage of high speed impulse liquid jets for putting out gas blowouts. Journalof Theoretical and Applied Mechanics (Poland), 3, 655–664. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938701022&partnerID=40&md5=7bb1aef5a447873de21f8e81c67eedd0
  10. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finelydispersed water. EasternEuropean Journal of Enterprise Technologies, 2, 10–92, 38–43. doi: 15587/1729-4061.2018.127865
  11. Vambol, S., Bogdanov, I., Vambol, V., Suchikova, Y., Kondratenko, O., Hurenko, O., Onishchenko, S. (2017). Research into regularities of pore formation on the surface of semiconductors. Eastern-European Journal of Enterprise Technologies, 3, 5–87, 37–44. doi: 15587/1729-4061.2017.104039
  12. Chernukha, A., Teslenko, A., Kovaliov, P., Bezuglov, O. Mathematical modeling of fire-proof efficiency of coatings based on silicate composition. (2020). Materials Science Forum, 1006, 70–75. Available at: https://www.scopus.com/inward/uri?eid=2-s2.0-85090288706&doi=10.4028%2fwww.scientific.net%2fMSF.1006.70&partn
  13. Vasilchenko, A., Otrosh, Yu., Adamenko, N., Doronin, E., Kovalov, A. (2018). Feature of fire resistance calculation of steel structures with intumescent coating. MATEC Web of Conferences, 230, 02036. doi: 1051/matecconf/201823002036
  14. Kustov, M., Kalugin, V., Tutunik, V., Tarakhno, O. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 92–99. doi: 32434/0321-4095-2019-122-1-92-99
  15. Dadashov, I. F., Kirieiev, O. O., Trehubov, D. H., Tarakhno, O. V. (2021). Hasinnia horiuchykh ridyn porystymy materialamy ta heleutvoriuiuchymy systemamy. Kharkiv: FOP Brovin, 240 . ISBN 978-617-8009-60-1. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/14033
  16. Makarenko, V. S., Kirieiev, O. O., Trehubov, D. H., Chyrkina, M. A. (2018). Doslidzhennia vohnehasnykh vlastyvostei binarnykh shariv lehkykh porystykh materialiv, 1(33), 235–245. doi: 52363/2524-0226-2021-33-18
  17. Babashov, I. B., Dadashov, I. F., Kirieiev, O. O., Savchenko, O. V. (2022). Vybir sypkykh materialiv dlia hasinnia poliarnykh lehkozaimystykh ridyn, 1(35), 311–324. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/16031
  18. Makarenko, V. S., Kirieiev, O. O., Slepuzhnikov, Ye. D., Chyrkina, M. A. (2022). Doslidzhennia vplyvu poroshkiv na vohnehasni kharakterystyky binarnykh shariv porystykh materialiv, 1(35), 297–310. doi: 10.52363/2524-0226-2022-35-22