The identification of hydrocarbons cluster structure by melting point

 

Dmitry Tregubov

National University of Civil Defence of Ukraine

http://orcid.org/0000-0003-1821-822X

 

Olena Tarahno

National University of Civil Defence of Ukraine

http://orcid.org/0000-0001-9385-9874

 

Dmitry Sokolov

National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-7772-6577

 

Flora Tregubova

National University of Civil Defence of Ukraine

https://orcid.org/0000-0003-2497-7396

 

DOI: https://doi.org/10.52363/2524-0226-2021-34-7

 

Keywords: cluster, structure of matter, melting point, mass burnout rate, oscillation,

hydrocarbons, calculation

 

Аnnotation

 

The presence of oscillatory changes in the substance properties in homologous series of hydrocarbons, in particular for the melting point, is analyzed. A method for predicting the mass burnout rate of normal structure alcohols and alkanes on the basis of melting point values to account for oscillations is presented. It is proved that the tendency to increase melting temperatures depending on the number of carbon atoms in the molecule for selected homologous series of hydrocarbons (alkanes, alkenes, alkynes, cycloalkanes of normal structure) has a certain oscillation by the principle of "even-odd" molecules or gradation deviation from linearity. It is shown that the similarity of this dependence between homologous series arises if alkenes and alkynes are considered as shorter molecules than the corresponding alkanes, and cycloalkanes – as longer. It is accepted as a working hypothesis that this is due to the presence of the smallest structural unit of matter in the clusters form with a certain coordination number. The oscillation properties of the substance are explained by the fact that clustering can occur both at the final carbon site in the molecule and at other carbons in the chain of the molecule, and this fact depends on the "parity-oddness". Based on the known values of melting temperatures in homologous series, the possible structure of clusters is proposed. It is shown that the obtained values of equivalent lengths for these clusters correlate with the corresponding melting temperatures. This correlation is described by the third degree polynomial, which gives an approximation coefficient of 0.995 and a mean deviation of 7.1 K. An approximation formula for calculating these classes melting point of hydrocarbons based on the values of equivalent molecular weight and cluster length has been developed. This calculation is characterized by an approximation factor of 0.997 and a mean deviation of 4.2 K. Emphasis is placed on the possibility of improving the calculation convergence with the substance properties, provided that the structure of the clusters is clarified.

 

References

  1. Boronski, J., Seed, J. et al. (2021). A crystalline tri-thorium cluster with σaromatic metal–metal bonding. Nature, 598, 72–75. doi: 10.1038/s41586-021-03888-3
  2. Gun’ko, V., Nasiri, R. Sazhin, S. (2014). A study of the evaporation and condensation of n-alkane clusters and nanodroplets using quantum chemical methods // Scientific Reports. Fluid Phase Equilibria, 366, 99–107. doi:10.1016/j.fluid.2014.01.010
  3. Toikka, A. M., Toikka, M. A., Pisarenko, Y. A. Serafimov, L. A. (2009). Vapor-liquid equilibria in systems with esterification reaction. Theoretical Foundations of Chemical Engineering, 43, 2, 129–142. doi: 10.1134/S004057950902002X
  4. Doroshenko, I. Yu. (2017). Spectroscopic study of cluster structure of nhexanol trapped in an argon matrix. LTPh, 43, 6, 919–926. doi: 10.1063/1.4985983
  5. Alonso, J. A. (2011). Structure and Properties of Atomic Nanoclusters. Imperial College Press. 492. doi: 10.1142/p383
  6. Litinskii, G. B. (2008). Statistical thermodynamics of mixtures of polar liquids in the model of hindered rotation of molecules. JPhCh, 82, 9, 1475–1479. doi:10.1134/S0036024408090124
  7. Shykov, A. A., Garkushin, I. K. et al. (2010). Analytical and graphic interrelation of n-alkanes melting and boiling temperatures. BChJ, 17, 2, 50–53. Retrieved from https://af.booksc.org/book/36331769/056265
  8. Hao, P., Dong, Z. et al. (2018). n-Alkanes phase change materials and their microencapsulation for thermal energy storage. Energy Fuels, 32, 7262−7293. doi: 10.1021/acs.energyfuels.8b01347
  9. Fingas, M. (2012). Studies on the evaporation regulation mechanisms of crude oil and petroleum products. AChES. 2, 2, 246–255. doi: 10.4236/aces.2012.22029
  10. Tregubov, D. G., Tarakhno, О. V. Trehubova, F. D. (2021). Nonlinearity of mass velocities of burning for hydrocarbons from different homological series. Emergency protection. Svetlaya Roshcha: IRUQ, 2021, 155–159. Retrieved from http://repositsc.nuczu.edu.ua/handle/123456789/13565
  11. Piana, M., Stecher, K. et al. (2016). Laboratory сourse in рhysical сhemistry for fundamental studies. Munchen: Technische Universität, 500. Retrieved from https://www.department.ch.tum.de/fileadmin/w00bzu/tec/Teaching/PCI_LabCourseScript_SS2020_2.8_B_W.pdf
  12. Tregubov, D., Tarakhno, О., Sokolov, D., Trehubova, F. (2020). The oscillation of n-alkanes characteristic temperatures under the action the cluster structure of substance. Problems of Emergency Situations, 32, 14–30. doi:10.5281/zenodo.4400131
  13. Tregubov, D. G., Tarakhno, O. V. Kyreev, O. O. (2018). Vplyv klasternoyi budovy tekhnichnykh sumishey ridyn na znachennya kharakternykh temperatur. Problemy nadzvychaynykh sytuatsiy, 28, 99–110. doi: 10.5281/zenodo.2598054
  14. Tarakhno, O. V., Tregubov, D. G. Zhernokl'ov, K. V. (2010). Teoríya rozvitku ta pripinennya gorínnya. ch.I. Kharkiv, Mís'ka drukarnya, 309. Retrieved from: http://repositsc.nuczu.edu.ua/handle/123456789/3233
  15. Laszlo, P. (1993). Logique de la synthese organique, 1, 208. Retrieved from: https://sites.google.com/site/kingtencithejohhtur/telecharger-logique-de-la-syntheseorganique-pdf (дата звернення: 20.08.2021).
  16. Hydrocarbons – Physical Data. (2021, 20.08). Engineering ToolBox. Retrieved from https://www.engineeringtoolbox.com/hydrocarbon-boiling-melting-flashautoignition-point-density-gravity-molweight-d_1966.htm