Calculation and experimental method for estimating fire resistance of fireproof steel structures

 

Andrii Kovalov

Cherkassy Institute of Fire Safety of National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-6525-7558

 

Yurii Otrosh

National University of Civil Defence of Ukraine

https://orcid.org/0000-0003-0698-2888

 

Vitalii Tomenko

Cherkassy Institute of Fire Safety of National University of Civil Defence of Ukraine

https://orcid.org/0000-0001-7139-9141

 

Oleksandr Pirogov

National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-9858-0801

 

Nataliia Morkovska

Kharkiv National University of Municipal Economy named after O. M. Beketova

https://orcid.org/0000-0001-5265-2025

 

DOI: https://doi.org/10.52363/2524-0226-2021-34-6

 

Keywords: fire resistance, fire resistance assessment method, fire protection, building constructions, fire-retardant ability, fire temperature regimes

Аnnotation

Physical and mathematical models for assessing the fire resistance of fire-resistant steel structures have been developed. An algorithm is used, which includes experimental and computational procedures in determining the fire resistance of fire-resistant steel structures. The initial and boundary conditions for the construction of these models are formulated, which allow to predict the fire resistance of the fire-resistant steel structure with sufficient accuracy for engineering calculations. The peculiarity of the developed models is taking into account the thermophysical characteristics of steel structures and fire-retardant coatings, the peculiarities of the formation of fire regimes. Based on the proposed physical and mathematical models, a computational and experimental method for estimating the fire resistance of fire-resistant steel structures has been developed. The adequacy of the developed method was checked when assessing the fire resistance of a fire-retardant steel column. A computer model of a fire-retardant steel column was built to simulate nonstationary heating of such a system in the FRIEND software package. The results of determining the convergence of experimental data on the duration of fire exposure at the standard temperature to reach the critical temperature of steel with the results of numerical simulations in the software package FRIEND. Based on the comparison of the experimental results and numerical simulations, a conclusion is made about the adequacy of the developed model to the real processes that occur when heating fire-retardant steel columns without applying a load under fire conditions at standard fire temperature.

 

References

  1. Novak, S., Drizhd, V., Dobrostan, O., Maladyka, L. (2019). Influence of testing samples’ parameters on the results of evaluating the fireprotective capability of materials. Eastern-European Journal of Enterprise Technologies, 2(10), 35–42. doi:10.15587/1729-4061.2019.164743
  2. De Silva, D., Bilotta, A., Nigro, E. (2019). Experimental investigation on steel elements protected with intumescent coating. Construction and Building Materials, 205, 232–244. doi: 10.1016/j.conbuildmat.2019.01.223
  3. Nadjai, A., Petrou, K., Han, S., Ali, F. (2016). Performance of unprotected and protected cellular beams in fire conditions. Construction and Building Materials, 105, 579–588. doi: 10.1016/j.conbuildmat.2015.12.150
  4. Garlińska, U., Michalak, P., Popielarczyk, T. (2015). Szacowanie możliwości utraty nośności konstrukcji budowlanej w warunkach pożaru. BITP, 39, Is. 3, 59–66.
  5. Džolev, I., Cvetkovska, M., Radonjanin, V., Lađinović, Đ., Laban, M. Modelling approach of structural fire performance. In book of proceedings (Vol. 17).
  6. Cirpici, B. K., Wang, Y. C., Rogers, B. (2016). Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal, 81, 74–84. doi: 10.1016/j.firesaf.2016.01.011
  7. Gillet, M., Perez, L., Autrique, L. (2019). A model based predictive tool for fire safety intumescent coatings design. Fire Safety Journal, 110. doi: 10.1016/j.firesaf.2019.102908
  8. Morys, M., Häßler, D., Krüger, S., Schartel, B., Hothan, S. (2020). Beyond the standard time-temperature curve: Assessment of intumescent coatings under standard and deviant temperature curves. Fire Safety Journal, 112. doi: 10.1016/j.firesaf.2020.102951
  9. Li, G. Q., Han, J., Lou, G. B., Wang, Y. C. (2016). Predicting intumescent coating protected steel temperature in fire using constant thermal conductivity. Thin-Walled Structures, 98, 177–184. doi: 10.1016/j.tws.2015.03.008
  10. Novak, S. V., Krukovskyi, P. H., Perepylytsia, M. S. (2016). Vyznachennia rozpodilu temperatury u stalevykh konstruktsiiakh v umovakh vohnevoho vplyvu rozrakhunkovymy metodamy. Naukovyi visnyk: tsyvilnyi zakhyst ta pozhezhna bezpeka, 1, 9–15.
  11. Kovalov, A., Slovinskyi, V., Udianskyi, M., Ponomarenko, I., Anszczak, M. (2020). Research of fireproof capability of coating for metal constructions using calculation-experimental method. In Materials Science Forum. 1006 MSF, 3–10. Trans Tech Publications Ltd. doi: 10.4028/www.scientific.net/MSF.1006.3
  12. Kovalov, A. I., Otrosh, Y. A., Vedula, S., Danilin, O. M., Kovalevska, T. M. (2019). Parameters of fire-retardant coatings of steel constructions under the influence of climatic factors. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2019, 3, 46–53. doi: 10.29202/nvngu/2019-3/9
  13. Kovalov, A., Otrosh, Y., Chernenko, O., Zhuravskij, M., Anszczak, M. (2021). Modeling of non-stationary heating of steel plates with fire-protective coatings in ansys under the conditions of hydrocarbon fire temperature mode. In Materials Science Forum. 1038 MSF, 514–523. Trans Tech Publications Ltd.
  14. Kovalov, A. I., Otrosh, Yu. A., Tomenko, V. I., Danilin, O. M., Bezuhla, Yu. S. Karpets K. M. (2020). Otsiniuvannia vohnezakhysnoi zdatnosti reaktyvnykh pokryttiv stalevykh konstruktsii. Problemy nadzvychainykh sytuatsii, 2 (32), 44–55.
  15. Kolšek, J., Češarek, P. (2015). Performance-based fire modelling of intumescent painted steel structures and comparison to EC3. Journal of Constructional Steel Research, 104, 91–103. doi: 10.1016/j.jcsr.2014.10.008
  16. Li, G. Q., Han, J., Wang, Y. C. (2017). Constant effective thermal conductivity of intumescent coatings: Analysis of experimental results. Journal of Fire Sciences, 35(2), 132–155.
  17. ENV 1993-1-2:2005. Eurocode 3, Design of steel structures, Part 1.2, general rules – Structural fire design