Development of a method for remote delivery of extinguishing composition in a container shaped like a dumbbell

 

Leonid Kutsenko

National University of Civil Defence of Ukraine

http://orcid.org/0000-0003-1554-8848

 

Andrii Kalynovskyi

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-1021-5799

 

Oleksandr Kireev

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-8819-3999

 

Borys Kryvoshei

National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-2561-5568

 

Elena Sukharkova

National University of Civil Defence of Ukraine

https://orcid.org/0000-0003-1033-4728

 

DOI: https://doi.org/10.52363/2524-0226-2022-35-4

 

Keywords: geometric modeling, dumbbell-shaped container, Lagrange equations of the second kind, rotational-translational motion of the container

 

Аnnotation

A geometric model of a new method of delivering extinguishing agents to the fire zone is proposed. The delivery idea is based on a mechanical throwing operation. For this, the substance is placed in a hard shell - a special container. After being delivered to the fire site by means of the launching device, the container must collapse and release a substance that will contribute to extinguishing the fire. New in the proposed method of delivery is the use of two weights spaced at a certain distance, connected by a rod. This modernization made it possible to abandon the traditional cylindrical containers and the use of air guns as launching devices. After all, the disadvantage of the "cannon" fire extinguishing technology lies in the difficulty of imparting axial rotation to the cylindrical container to ensure the stability of its movement. In the proposed method of delivery, the initiation of the movement of the dumbbell-container is carried out using a special launching device. It provides the simultaneous action of two explosive impulses directed at the centers of mass of each dumbbell weight in a pre-calculated manner. As a result of the start, the dumbbell acquires a rotational-translational movement in the vertical plane. To describe the dynamics of the dumbbell movement, a Lagrangian was determined, and a system of Lagrange differential equations of the second kind was compiled and solved. Examples of modeling the trajectories of the centers of mass of the dumbbell weights in the vertical plane are given. The main advantages of the new method include the possibility of separate delivery of extinguishing agents to the fire zone. Since there are substances for which the fire extinguishing effect is significantly increased as a result of their mixing directly in the combustion zone. Therefore, it is advisable to use the proposed delivery method as the basis for a new fire extinguishing technology.

 

References

  1. These 3 inventions make it possible for firefighters to extinguish fires without getting close to the flames (2018). Jasmine Kim and Adrian Traviezo Nov 19, 2018. Retrieved from https://www.businessinsider.com/firefighting-technology-thatextinguishes-flames-without-getting-close-2018-9
  2. Kovalev, A. A., Kalynovskyy, A. Ya., Khmyrov, Y. M. (2018). Razrabotka otdelʹnykh aspektov konteynernoho metoda pozharotushenyya Problemy pozharnoy bezopasnosty. Sbornyk nauchnykh trudov. Kharʹkov, 44, 57–69. Retrieved from http://nbuv.gov.ua/UJRN/Ppb_2018_44_11
  3. Kutsenko, L., Vanin, V., Naidysh, A., Nazarenko, S., Kalynovskyi, A., Cherniavskyi, A., Shoman, O., Semenova-Kulish, V., Polivanov, O., Sivak, E. (2020). Development of a geometric model of a new method for delivering extinguishing substances to a distant fire zone. Eastern-European Journal of Enterprise Technologies, 4 (7 (106), 88–102. doi: 10.15587/1729-4061.2020.209382
  4. Saveliev, D., Khrystych, O., Kirieiev, O., Chyrkina, M. (2020). Binary fireextinguishing systems with separate application as the most relevant systems of forest fire suppression // European Journal of Technical and Natural Science, 1, 31–36. Retrieved from http://repositsc.nuczu.edu.ua/handle/123456789/7121
  5. Pyetukhov, R. A., Kiryeyev, O. O., Slepuzhnikov, Ye. D. (2019). Doslidzhennya chasu vtraty tekuchosti heleutvoryuyuchykh system Na2O∙2,5SiO2+NH4Cl ta Na2O∙2,5SiO2+(NH4)2SO4, yaki zaproponovano vykorystovuvaty dlya oderzhannya izolyuyuchykh pin // Problemy nadzvychaynykh sytuatsiy, 30, 155–163. Retrieved from http://repositsc.nuczu.edu.ua/handle/123456789/10606
  6. Tsarev, A. M., Zhuykov, D. A. (2007). Mekhanika deystviya perspektivnykh ognetushashchikh sostavov v ustanovkakh pozharotusheniya stvolovogo tipa konteynernoy dostavki metodom metaniya // Izvestiya Samarskogo nauchnogo tsentra RAN, 9, 3, 771–785. Retrieved from https://cyberleninka.ru/article/n/mehanika-deystviyaperspektivnyh-ognetushaschih-sostavov-v-ustanovkah-pozharotusheniya-stvolovogotipa-konteynernoy-dostavki-metodom
  7. Tsarev, A. M., Zhuykov, D. A. (2007). Voprosy vneshney ballistiki poleta konteynera dlya dostavki ognetushashchikh sostavov v konteynerakh metodom metaniya s primeneniyem ustanovok pozharotusheniya stvolovogo tipa // Izvestiya Samarskogo nauchnogo tsentra RAN, 9, 3, 786–795. Retrieved from https://cyberleninka.ru/article/n/voprosy-vneshney-ballistiki-poleta-konteynera-dlyadostavki-ognetushaschih-sostavov-v-konteynerah-metodom-metaniya-s-primeneniem
  8. Zahalʹni teoremy dynamiky ta elementy analitychnoyi mekhaniky: konspekt lektsiy dlya studentiv mekhaniko-mashynobudivnoho instytutu napryamiv pidhotovky 6.050502 «Inzhenerna mekhanika» ta 6.050503 «Mashynobuduvannya» dlya vsikh form navchannya / NTUU «KPI», uklad. O. A. Babayev, V. F. Kryshtalʹ. tekstovi dani (1 fayl: 2,22 Mbayt). Kyyiv: NTUU «KPI», 2015, 82. Retrieved from https://ela.kpi.ua/handle/123456789/17661
  9. Yegorov, A. D., Potapova, I. A. (2020). Teorema Koniga: Prostoy primer.doi: 10.13140/RG.2.2.36728.39684
  10. Rouben Rostamian A Guided Tour of Analytical Mechanics with animations in MAPLE. (2018). Department of Mathematics and Statistics UMBC December 2, 111. Retrieved from https://userpages.umbc.edu/~rostamia/2014-09-math490/lecture-notes.pdf
  11. Rouben Rostamian MATH 490: Special Topics in Mathematics Analytical Mechanics Math 490, Fall (2018). 7. Retrieved from https://userpages.umbc.edu/~rostamia/2018-09-math490/
  12. Modern Robotics Course Notes. Chapter 8: Dynamics of Open Chains (2021). Retrieved from https://muchensun.github.io/ModernRoboticsCourseNotes/ch8.html 13. David, P. Murdock. Rotation of an Object About a Fixed Axis 2013. Retrieved from https://www2.tntech.edu/leap/murdock/books/v2chap1.pdf
  13. Kutsenko, L. M., Kalynovsʹkyy, A. Ya., Polivanov, O. H. (2020). Animatsiyni ilyustratsiyi do statti «Kompʺyuterne modelyuvannya novoyi tekhnolohiyi viddalenoyi do-stavky zasobiv hasinnya pozhezh». Retrieved from http://repositsc.nuczu.edu.ua/handle/123456789/10860
  14. Dvizheniye tela, broshennogo pod uglom k gorizontu. Zakony podobiya. (2020). Retrieved from https://lawbooks.news/informatika_961/dvijenie-telabroshennogo-pod-uglom-gorizontu-69582.html
  15. Dvizheniye tela v pole tyazhesti s uchotom soprotivleniya vozdukha. (2020). Retrieved from https://glebgrenkin.blogspot.com/2014/03/blog-post.html
  16. Snub dodecahedron From Wikipedia, the free encyclopedia. Retrieved from https://en.wikipedia.org/wiki/Snub_dodecahedron
  17. Instructables craft. Making a Snub Dodecahedron. Retrieved from https://www.instructables.com/Making-a-Snub-Dodecahedron
  18. Deleanu, D. Theoretical Mechanics. Theory and Applications. (2012). Constan Ńa: Nautica, 299. doi: 10.13140/RG.2.1.1786.1842
  19. Parabolic Motion of Projectiles. The Physics Classroom. Retrieved from https://www.physicsclassroom.com/mmedia/vectors/bds.cfm
  20. Nastroyky smartfona. Huawei Devices. (2020). Retrieved from https://huaweidevices.ru/katalog/inzenernoe-menyu-onor-i-uaei-kak-zayti-kodynastroyka-i-kalibrovka-smartfona