Choice of bulk materials for extinguishing polar flammable liquids

 

Ilham Babashov

Academy of the Ministry of Emergencies of the Republic of Azerbaijan

http://orcid.org/0000-0002-3294-1767

 

Ilgar Dadashov

Academy of the Ministry of Emergencies of the Republic of Azerbaijan

http://orcid.org/0000-0002-1533-1094

 

Oleksandr Kireev

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-8819-3999

 

Alexander Savchenko

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-1305-7415

 

DOI: https://doi.org/10.52363/2524-0226-2022-35-23

 

Keywords: extinguishing liquids, polar flammable liquids, ethanol, bulk materials, foam glass, adsorbents, combustion inhibitors

 

Аnnotation

The study of the previously proposed method of extinguishing polar liquids with fire extinguishing agents based on light bulk porous materials is continued. The analysis of characteristics (adsorption properties in relation to ethanol vapor, the effect of combustion inhibition) and the choice of bulk materials for extinguishing flammable polar liquids. The bulk density, moisture content and buoyancy in ethanol of a number of selected bulk materials with different dominant mechanisms of cessation of combustion and different sizes and shapes of granules were experimentally determined. It has been established that the greatest buoyancy of a two-layer fire extinguishing system can be ensured with the help of foam glass with granule sizes (10–15), (15–25) and (25–35) mm. The influence of the characteristics of bulk materials on their fire-extinguishing properties: bulk density, buoyancy, water retention, ability to fill the voids of the lower layer and wake up through this layer is analyzed. Based on the determination of the ability to fall through the layer of granular foam glass, it was found that the lowest pouring provides the lower layer of foam glass with a granule size (10–15) mm. It was determined that the best adsorption properties in relation to ethanol vapor exhibits silica gel – 5,3 wt. %. It is concluded that for further study of the fire extinguishing properties of a two-layer fire extinguishing system designed to extinguish flammable polar liquids as a material that provides buoyancy, it is advisable to choose foam glass with a granule size (10–15) mm. For the top layer, it is advisable to test all substances that can inhibit the combustion process, as well as zeolites, granular silica gel, foam glass with a granule size (5–10) mm, expanded perlite with granules with a diameter of (1–1,5) mm, and two varieties exfoliated vermiculite.

 

References

  1. EN 1568-1:2018. Fire extinguishing media. Foam concentrates. Part 1: Specification for medium expansion foam concentrates for urface application to water-immiscible liquids.
  2. EN 1568-2:2018. Fire extinguishing media – Foam concentrates. Part 2: Specification for highex pansion foam concentrates for surface application to water-immiscible
  3. EN 1568-3:2018. Foam concentrates. Part 3: Specification for low expansion foam concentrates for surface application to water-immiscible liquids /European standard.
  4. Borovikov, V. O., Chepovskiy, V. O., Slutska, O. M. Rekomendats, I. Yi. (2009). Schodo gasinnya pozhezh u spirtoshovischah, scho mIstyat etiloviy spirt. MNS UkraYini. K.: UkrNDIPB, 76.
  5. Rekomendatsii po tusheniyu polyarnih zhidkostey v rezervuarah. (2007). : FGU VNIIPO MChS Rossii, 58.
  6. Normyi pozharnoy bezopasnosti Respubliki Belarus. Poryadok opredeleniya neobhodimogo kolichestva sil i sredstv podrazdeleniy po chrezvyichaynyim situatsiyam dlya tusheniya pozharov. MChS Belarus. Minsk, 27.
  7. Ivanković, T. (2010). Surfactants in the environment. Arh. Hig. Rad. Toksikol, 61, 1, 95–110. http://dx.doi.org/10.2478/10004-1254-61-2010-1943
  8. Olkowska, E. (2011). Analytics of surfactants in the environment: problems and challenges. Chem. Rev, 111, № 9, 5667–5700. https://doi.org/10.1021/cr100107g
  9. Bocharov, V. V. Raevskaya, M. V. (2013). Ispolzovanie perftorirovannyih PAV v penoobrazovatelyah – «vtoroe prishestvie». Galogenorganika s naihudshim stsenariem razvitiya dlya obitateley zemli. Pozharovzryivobezopasnost, 22, 10, 75–82.
  10. Bezrodnyiy, I. F. (2013). Ekologiya pozharotusheniya – poka eto tolko slova. Pozharovzryivobezopasnost, 22, 6, 85–90.
  11. Huiqiang, Zhi, Youquan, Bao, Lu, Wang, Yixing, Mi. (2020). Extinguishing performance of alcohol-resistant firefighting foams on polar flammable liquid fires. Journal of Fire Sciences, 38(1), 53–74. doi: 10.1177/0734904119893732 journals.sagepub.com/home/jfs
  12. Dadashov, I. F., Kirieiev, O. O., Trehubov, D. H., Tarakhno, O. V. (2021). Hasinnia horiuchykh ridyn porystymy materialamy ta heleutvoriuiuchymy systemamy. Kharkiv.: FOP Brovin, 240. ISBN 978-617-8009-60-1
  13. Makarenko, V. S., Kirieiev, O. O., Chyrkina, M. A., Dadashov I. F. (2020). Doslidzhennia izoliuiuchykh vlastyvostei shariv lehkykh porystykh materialiv. Problemы pozharnoi bezopasnosty, 48, 112–118. URL: https://nuczu.edu.ua/images/topmenu/ science/zbirky-naukovykh-prats-ppb/ppb48/pdf
  14. Dadashov, І., Kireev, А., Kirichenko, I., Kovalev, A., Sharshanov, A. (2018). Simulation of the properties two-laer material. Functional Materials, 25, 4, 774–779. doi:https//doi.org/10.15407/fm25.04.1
  15. Elektronniy resurs https://vb.by/society /incidents/spirt.html
  16. Elektronniy resurs. Ethanol Tank Fire Fighting Background and previous research. https://www.sp.se/en/Sidor/default.aspx
  17. Babashov, I. B., Dadashov, I. F., Kireev, A. A. (2021). Puti sovershenstvovaniya metodov tusheniya polyarnyih legkovosplamenyayuschihsya zhidkostey. Proceedings of international and scientific conference on “Prospects of innovative development of technical and natural sciences”, Baku, Azerbaijan, 24–32.
  18. Zhuo, Chen, Shixiong, Huang, Bingyan, Jiang. (2015). Syntactic for prepared with glass hollow spheres of designed size and wall thickness ratio. Advanced Materials Research, 1061–1062, 129–132.