Investigation of the effects of powders on fire extinguishing characteristics of binary layers of porous materials

 

Viktoriya Makarenko

National University of Civil Defence of Ukraine

http://orcid.org/0000-0001-5629-1159

 

Oleksandr Kireev

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-8819-3999

 

Evgen Slepuzhnikov

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-5449-3512

 

Maryna Chyrkina

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-2060-9142

 

DOI: https://doi.org/10.52363/2524-0226-2022-35-22

 

Keywords: flammable liquids, binary fire extinguishing system, perlite, vermiculite, foam glass, dispersed powders, crystal hydrates

 

Аnnotation

The influence of dispersed powders on quenching of flammable liquids by means of use of binary layers of light porous materials is investigated. The choice of granular foam glass as a material of the lower layer of the binary system is substantiated. Exfoliated perlite and vermiculite were chosen for the upper layer, which exhibits increased insulating properties. It is proposed to apply powders on the upper layer of the binary fire extinguishing system: sand, ground talc, hollow glass microspheres. The use of the following low-melting powders of crystal hydrates of medium degree of dispersion was also investigated: aluminum sulfate, sodium acetate, sodium hydrogen phosphate, sodium potassium acid, zinc sulfate and sodium thiosulfate. This reduces the volume of the cavities of this layer, which will increase the insulating properties of the fire extinguishing system. For the selected materials of the fire extinguishing system are defined: bulk density, buoyancy, moisture retention and ability to fill the cavities of the layer of material below. The highest buoyancy and the lowest bulk density of the binary fire extinguishing system is provided by the use of crushed foam glass as the bottom layer. The use of expanded perlite with a granule size of 1,2±0,2 mm and lamellar vermiculite with a plate size of 2×2,5 and 2×5 mm ensures the highest moisture content and the lowest ability to spill powders through the upper layer of the fire extinguishing system. Based on the study of the effect of fine powders of low-melting crystal hydrates on the fire-extinguishing characteristics of binary layers of light porous materials, it was found that the best results provide the use of crystal hydrates of sodium acetate (1,5 kg/m2), sodium hydrogen phosphate (0,12 kg/m2) and zinc sulfate (1,3 kg/m2). Of the latter, sodium hydrogen phosphate crystal hydrate is the most effective.

 

References

  1. Campbell, R. (2014). Fires at Outside Storage Tanks. National fire protection association. https://www.nfpa.org/News-and-Research/Data-research-and-tools/ Building-and-Life-Safety/Fires-at-Outside-Storage-Tanks
  2. Hylton, J. G., Stein, G. P. (2017). U.S. Fire Department Profile. National Fire Protection Association. https://www.nfpa.org/-/media/Files/News-and-Research/Fire-statistics/Fire-service/osfdprofile.pdf
  3. Tauseef, S. M., Ramyapriya, R., Tasneem, A., Abbasi, S. A. (2017). Models for assessing the spread of flammable liquid spills and their burning. International Journal of Engineering, Science and Mathematics, 6(8), 154–184. https://www.researchgate.net/publication/322117150_Models_for_assessing_the_spread_of_flammable_liquid_spills_and_their_burning
  4. Lang, X.-q., Liu, Q.-z., Gong, H. (2011). Study of Fire Fighting System to Extinguish Full Surface Fire of Large Scale Floating Roof Tanks. Procedia Engineering, 11,189–195. https://www.sciencedirect.com/science/article/pii/S1877705811008344
  5. Olkowska, E., Polkowska, Z., Namieśnik, J. (2011). Analytics of surfactants in the environment: problems and challenges. Chem. Rev, 111(9), 5667–5700. https://doi.org/10.1021/cr100107g
  6. Dadashov, I. F., Trehubov, D. H., Senchykhin, Y. M., Kiryeyev, O. O. (2018). Napryamky vdoskonalennya hasinnya pozhezh naftoproduktiv. Naukovyy visnyk budivnytstva, 94(4), 238–249. https://nuczu.edu.ua/sciencearchive/Problems OfEmergencies/vol28/4dadashev.pdf
  7. Dadashov, I. F. (2018). Doslidzhennya vlastyvostey vohnehasnoyi systemy na osnovi pinoskla. Problemy nadzvychaynykh sytuatsiy, 2(28), 39–56. http://repositsc.nuczu.edu.ua/handle/123456789/8905
  8. Makarenko, V. S., Kiryeyev, O. O., Tregubov, D. G., Chyrkina, M. A. (2021). Doslidzhennya vohnehasnykh vlastyvostey binarnykh shariv lehkykh porystykh materialiv. Problemy nadzvychaynykh sytuatsiy, 1(33), 235–245. http://pes.nuczu.edu.ua/images/arhiv/33/18.pdf
  9. Dadashov, І., Kireev, А., Kirichenko, I., Kovalev, A., Sharshanov, A. (2018). Simulation of the properties two-laer material. Functional Materials, 25, 4, 774–779. https//doi.org/10.15407/fm25.04.1
  10. Chen, Z., Huang, Z. X., Jiang, B. Y. (2014). Syntactic for prepared with glass hollow spheres of designed size and wall thickness ratio. Advanced Materials Research, 1061–1062, 129–132. doi: https//doi.org/10.4028/www.scientific.net/AMR.1061-1062.129
  11. Szczepaniak, R., Woroniak, G., Rudzki, R. (2019). Analysis of Energy Storage Capabilities in Hydrated Sodium Acetate Using the Phase Transitions of the First Kind. Springer Proceedings in Energy, 1043–1055. doi: https://doi.org/10.1007/978-3-030-13888-2_100
  12. Kahlenberg, V., Braun, D. E., Krüger, H., Schmidmair, D., Orlova, M. (2016). Temperature- and moisture-dependent studies on alunogen and the crystal structure of meta-alunogen determined from laboratory powder diffraction data. Physics and Chemistry of Minerals, 44(2), 95–107. https://doi.org/10.1007/s00269-016-0840-7
  13. Beaupere, N., Soupremanien, U., Zalewski, L. (2021). Influence of Water Addition on the Latent Heat Degradation of Sodium Acetate Trihydrate. Applied Sciences, 11(2), 484. https://doi.org/10.3390/app11020484
  14. Dannemand, M., Johansen, J. B., Furbo, S. (2016). Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite. Solar Energy Materials and Solar Cells, 145, 287–295. https://doi.org/10.1016/j.solmat.2015.10.038
  15. Rao, Khandavilli, U. B., Gangavaram, S., Rajesh Goud, N., Cherukuvada, S., Raghavender, S., Nangia, A., Manjunatha, S. G., Nambiar, S., Pal, S. (2014). High solubility crystalline hydrates of Na and K furosemide salts. CrystEngComm, 16(22), 4842–4852. https://doi.org/ 10.1039/C3CE42347F
  16. Saha, J., Podder, J. (2012). Crystallization Of Zinc Sulphate Single Crystals And Its Structural, Thermal And Optical Characterization. Journal of Bangladesh Academy of Sciences, 35(2), 203–210. https://doi.org/10.3329/jbas.v35i2.9426
  17. Safety data sheet. (2018). Sodium Thiosulfate, 5-hydrate, Crystal, USP/EP/BPJP. Columbus Chemical Industries.