Calculation of working profiles of rotary machines, consistent with their gears

 

Leonid Kutsenko

National University of Civil Defence of Ukraine

http://orcid.org/0000-0003-1554-8848

 

Sergey Vasyliev

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-6602-8765

 

Borys Kryvoshei

National University of Civil Defence of Ukraine

https://orcid.org/0000-0002-2561-5568

 

Elena Sukharkova

National University of Civil Defence of Ukraine

https//orcid.org/0000-0003-1033-4728

 

DOI: https://doi.org/10.52363/2524-0226-2022-35-12

 

Keywords: geometric modeling, rotary planetary mechanism, Wankel machine, functions of a complex variable

 

Аnnotation

A method for calculating a rotary planetary machine of the Wankel system is presented. A feature of the Wankel machine is that the movement of the rotor in relation to the body is carried out using a planetary mechanism, which is based on an internal gear. The proposed method makes it possible to take into account the connection between the parameters of the geometric shape of two pairs of mutually conjugate curves characteristic of the Wankel machine. The first pair of curves are the working profiles of the casing and the rotor. The second pair is formed by the tooth profiles of the internal gears. Accounting for this connection made it possible to find a description of the function of the change in time of working volumes limited by the profiles of the body and rotor (i.e., to determine the productivity of the machine). As a result of the research, it was found that the performance of the Wankel machine can be found by taking into account three features of this machine. The shaping of the conjugated working profiles of the rotor and stator is carried out using a planetary mechanism, for the calculation of which the functions of complex variables are used. The performance function of the machine is determined by the change in time of the volumes of space limited by the working profiles of the rotor and housing. An approximate description of the functions of changing the working volumes of the machine with time was carried out using specially developed graphic constructions. To match the geometrical parameters of the Wankel with the parameters of the tooth profiles of the gear train of the internal clutch, a method of graphic running has been developed. The results obtained are useful because the scheme of the considered Wankel machine is embedded in the design of the internal combustion engine of the same name, as well as in the design of various hydraulic machines, pumps, compressors, etc.

 

References

  1. Mc Farland & Company (2006). The Wankel rotary engine: a history by John B. Hege, URL: https://www.worldcat.org/title/wankel-rotary-engine-a-history/oclc/123964823
  2. Espinosa, L. , Lappas, P. (2019). Mathematical Modelling Comparison of a Reciprocating, a Szorenyi Rotary, and a Wankel Rotary Engine. Nonlinear Engineering, 8, 389–396. doi: 10.1515/nleng-2017-0082
  3. Warren, S. (2012). New Rotary Engine Designs by Deviation Function Method. Los Angeles, 138.
  4. Kutlar, O. , Malkaz, F. (2019). Two-stroke Wankel type rotary engine: a new approach for higher power density. Energies, 12, 4096, 22. doi: 10.3390/en12214096
  5. Beard, J. E., Pennock, G. R. (1992). Calculation of the displacernent of a Wankel rotary compressor. International Compressor Engineering Conference School of Mechanical Engineering, URL: https://core.ac.uk/outputs/4956490
  6. Reddy, A. R., Narendra Babu, G., Neelakanta, J., Jangam, Sumanth, Sreenivasulu, M. (2019). Design and Thermal simulation of Wankel engine rotor using catia and MSC patran. JETIR, 6 (4), URL: https://www.jetir.org/indexx?v= 6&i=4&j=April%202019
  7. Chiu-Fan, Hsieh, Hao-Yu, Cheng. (2015). Effects of various geometric designs on the flow characteristics of a triangular rotary engine. Mechanical Engineering Research, 5, 1, doi:10.5539/mer.v5n1p1
  8. Sadiq, G., Tozer, G., Al-Dadah, R., Mahmoud. (2017). CFD simulations of compressed air two stage rotary Wankel expander – parametric analysis. Energy Conversion and Management, 142, 42– URL: doi: 10.1016/j.enconman.2017.03.040
  9. Tartakovsky, L., Baibikov, V., Gutman, M., Veinblat, M. (2012). Simulation of Wankel engine performance using commercial software for piston engines, URL:https://www.researchgate.net/publication/285199690
  10. Drogosz, P. (2010). Geometry of the Wankel rotary engine. Journal of KONES Powertrain and Transport, 17, 3, URL: https://docplayer.net/52157713-Geometry-of-the-wankel-rotary-engine.html
  11. Sukhomlinov, R. M. (1975). Trokhoidnyye rotornyye kompressory. Khar'kov: KHGU Vishcha shkola, 152. URL: http://www.tsatu.edu.ua/pg/wp-content/uploads/sites/15/perelik-pidruchnykiv-ta-posibnyki-fsp.pdf
  12. Kutsenko, L. M., Bobov, S. V., Rosokha, S. V. (2004). Metodi geometrichnogo modelyuvannya v zadachakh pozhezhnoí̈ bezpeki. Navchal'niy posíbnik. Khar’kov: ATSZU, 175.
  13. Kutsenko, L. M., Reva, V. G. (2004). Viznachennya ob’êmnikh vitrat rotorno-planetarnikh trokhoí̈dnikh gídromashin. Sbornik nauchnykh trudov Kiyevskogo natsional'nogo universiteta tekhnologiy i dizayna. Spetsvypusk. K.:Vipol, 170–180.
  14. Vasil'êv, O. B. (2003). Profílyuvannya korpusu dviguna Vankelya v rezul'tatí obkatki trikutnikom Rello. Pratsí Tavríys'koí̈ derzhavnoí̈ agrotekhníchnoí̈ akademíí̈. Melítopol': TDATA, 4(19), 109–113.
  15. Reva, V.G. (2004). Opis vzaêmospryazhenikh krivikh za dopomogoyu funktsíy kompleksnoí̈ zmínnoí̈. Pratsí Tavríys'koí̈ derzhavnoí̈ agrotekhníchnoí̈ akademíí̈. Melítopol': TDATA, 4(23), 70–74.
  16. Sulíma, V. V. (2000). Opis krivolíníynikh trikutnikív, yakí pri sinkhronnomu obertanní zabezpechuyut' tochkoviy dotik. Prikladna geometríya ta ínzhenerna grafíka. Kií̈v: KNUBA, 67, 231–233.
  17. Vorontsova, D. V. (2007). Geometrichniy sintez rotorno-planetarnikh mashin z urakhuvannyam í̈khn'oí̈ dinamíki. Geometrichne ta komp’yuterne modelyuvannya. Zbírnik naukovikh prats' Ukraí̈ns'koí̈ asotsíatsíí̈ z prikladnoí̈ geometríí̈ «KHDUKHT». Kharkív, 20, 107–112.
  18. Ngo, K'yeu N'i, Ropota, Ye.P, Sukhomlinov, R. M. (1973). Opredeleniye vremya-secheniya raspredelitel'nykh okon trokhoidnykh rotorno-porshnevykh mashin. Vesti. Khar'k.politekhn, in-ta. Ser. Khimicheskoye mashinostroyeniye, 83, 5–9.
  19. Peden, M., Turner, M., Turner, JWG, Bailey, N. (2018). Comparison of 1-D Modelling Approaches for Wankel Engine Performance Simulation and Initial Study of the Direct Injection Limitations. SAE Technical Paper Series, 2018-01-1452, 17. doi: 4271/2018-01-1452