luminescent single-layer coating for the external surface of fire pressure hoses

 

Alexander Kudin

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0003-4788-6665

 

Marianna Goroneskul

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-3550-7640

 

Lyubov Andryushchenko

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0001-7866-9896

 

Vitalii Borysenko

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0003-1115-8666

 

DOI: https://doi.org/10.52363/2524-0226-2022-36-19

 

Keywords: fluorescent coating, polymer composition, protective coating, fire resistance, fire hoses, operational characteristics

 

Аnnotation

The operational characteristics of fire hoses are considered, such as: mechanical strength, hydrophobicity, resistance to the influence of climatic factors, heat and fire resistance, visibility in the dark, etc., depending on the presence of an external protective coating and its composition. It is namely the influence of the component composition of luminescent coatings on the characteristics of the products that was the object of research. It has been shown that silicone elastomer Sylgard-184 is a promising polymer basis for fluorescent coatings; coumarin-7 is an effective green fluorescent additive that gives the coating the desired yellow color; the introduction of halloysite filler into the composition of the luminescent layer increase significantly the adhesion of coating to substrate. The multi-layer structure of coatings and promising materials for creating fluorescent coatings for fire hoses have been considered. Under certain conditions, the number of protective coating layers can be reduced to one by combining several functions in one layer. The fire resistance of the fabric substrate does not deteriorate after applying a fluorescent coating, the protective properties of the single-layer coating allow to increase the resistance of the fabric to UV light and the negative impact of atmospheric factors, in that way preventing a deterioration of the characteristics of the fabric frame during operation. That the mechanical characteristics of the obtained samples don’t change after climatic tests, which allows predicting an increase in the service life. The proposed composition and method of applying the fluorescent coating is simpler compared to analogues and allows you to reduce the thickness and weight of a single-layer coating, the fabric becomes softer and more comfortable, the frame of fire hoses does not lose flexibility, and the coating is multifunctional.

References

  1. Firefighting equipment. Flat-folded fire hoses for fire-rescue vehicles. General requirements and test methods. (2021). DSTU 9069:2021 [Valid from 2021-08-01] DP "UkrNDNC". Available at: http://online.budstandart.com/ua/catalog/doc-page.html? id_doc=93904
  2. Firefighter-rescuer's directory. (2017) Kharkiv. Available at: https://dsns.gov.ua/upload/9/5/7/7/2018-10-2-112-dovidnik-pozeznogo-ryatuvalnika-2018.pdf
  3. Yong-Taek, H., Byung-Gyun, N., Se-Hong, M. (2017). The Development of High Pressure Long Distance Fire-fighting Hose with Phosphorescent Performance. Fire Science and Engineering, 31(5), 63–69. Available at: doi: https://doi.org/10.7731/ 2017.31.5.063
  4. Fire Hose of Syntex Signal with fluorescence coating. Available at: https://en.osw-eschbach.de /fire-fighting-hoses/syntex-signal-extra-robust-gelb/
  5. Fire pressure hose of AQUASILA. Available at: http://www.Aquasila.org.ua
  6. Xiong G., Zhang Z., Qi Y. (2022). Effect of the properties of long afterglow phosphors on the antifouling performance of silicone fouling-release coating. Prog. Org. Coating, 170, 106965. Available at: https://doi.org/10.1016/j.porgcoat. 2022.106965
  7. Andryushchenko, L., Borisenko, V., Goroneskul, M., Кudin, A. (2021). Evacuation signs with luminescent coating based on Sylgard-184 elastomer. Emergency Situations: Prevention and Liquidation, 5(2), 5– Available at: https://doi.org/10.31731/ 2524. 2636.2021.5.2
  8. Fire Retardant Polymers and Composite Materials (under D.-Y. Wang Ed.). (2016).Woodhead Publishing, Available at: http://surl.li/dqznc
  9. Skorodumova, O., Tarakhno, O., Chebotaryova, O., Hapon, Y., Emen, F. (2020). Formation of Fire Retardant Properties in Elastic Silica Coatings for Textile Materials. Problems of Emergency Situations: Materials and Technologies, 25–31. Available at: https://doi.org/10.4028/www.scientific.net/MSF.1006.25
  10. Goroneskul, M., Andryushchenko, L., Кudin, O. Lutsenko, Yu.,Borisenko, V., Barabash, I. (2021). Pat. № 147605 UA. Method of applying a luminescent coating. Int. Cl. A62B 3/00, A62B 17/00, C09D 5/00. №u 2020 07407; declareted: 20.11.2020; published: 26.05.2021; Bul. № Available at:http://29yjmo6.257.cz/bitstream/ 123456789/13248/1/pat_147605.pdf
  11. Tarakhno, E. V.,Andryushchenko, L. A.,Kudin, A. M., Trefilova, L. N. (2014). Application of organosilicon polymers for flameproof clothing. Problems of fire safety, 36, 243–258. Available at: https://nuczu.edu.ua/sciencearchive/ ProblemsOfFireSafety/vol36/tarahno_trfilova.pdf
  12. Moiz, A., Padhye, R., Wang, X. (2018). Durable Superomniphobic Surface on Cotton Fabrics via Coating of Silicone Rubber and Fluoropolymers. Coatings, 8, 104. Available at: https://doi.org/10.3390/coatings8030104
  13. Bulochnikov, (2007). Pat. №WO2007052092A1.Glow in dark composition formula with different afterglow colors and methods of processing. № PCT/IB2005/ 053594; declareted : 03.11.2005; published : 10.05.2007 Available at: https://patents.google.com/patent/WO2007052092A1/en
  14. Shpilinskaya, A. L., Кudin, A. M., Andryushchenko, L. A., Didenko, A. V., Zelenska, O. V. (2020) A protective hydrophobic coating for CsI(Tl) crystals. Instr. Exp. Technique, 63(1), 30–33. Available at: https://doi:10.1134/s0020441219060137
  15. Que, X. (2014). Pat. № Luminous, reflective and color-changing fire hose. №CN 2014 2019 0112.3U; declareted: 18.04.2014 ; published: 13.08.2014. Available at: https://patents.google.com/patent/CN203763745U/en
  16. Vohlidal, J. (2020). Polymer degradation: a short review. Chemistry Teacher International, 3(2), 213– Available at: https://doi:10.1515/cti-2020-0015
  17. Kudin, A. M.,Andryushchenko, L. A.,Gres’, V. Yu.,Didenko, A. V.,Charkina, T. A. (2010). How the surface-processing conditions affect the intrinsic luminescence of CsI crystal. J. Opt. Technology, 77(5), 300– Available at: https://doi:10.1364/ JOT.77.000300
  18. Olewnik-Kruszkowska, E.,Brzozowska, W.,Adamczyk, A.,Gierszewska, M., Wojtczak, I.,Sprynskyy, M. (2020). Effect of Diatomaceous Biosilica and Talc on the Properties of Dielectric Elastomer Based Composites. Energies, 13(21), 5828– Available at: https://doi.org/10.3390/en13215828
  19. Elastomer Sylgard-184. Available at: dow.com/en-us/pdp.sylgard-184-silicone -elastomer-kit.01064291z.html#overview
  20. Grinyov, B. V.,Sakhno, T. V.,Senchishin, V.G. (2003). Optical transparent and fluorescent polymers. Kharkiv: Institute for Single Crystals, 576.
  21. Andryushchenko, L. A., Vinograd, E. L., Gavrilyuk, V. P., Grinev, B. , Kudin, A. M., Charkina, T. A. (1997). Effect of Optical Selectivity and Surface Condition of CsI Crystals on Their Scintillation Parameters. Instr. Exp. Techniques, 40(4), 454–456.
  22. Goriletsky, V. I., Zaslavsky, B. , Zosim, D. I., Charkina, T. A., Trefilova, L. N., Renker, D., Ritt, S., Mzavia, D. A. (2002). Functional possibilities of organosilicon coatings on the surface of CsI-based scintillators. Nucl. Instr. Meth. Phys. Research, A486, 40–47. Available at: https://doi.org/10.1016/S0168-9002(02)00672-1
  23. Krasovitskii, B. M., Bolotin, B. M. (2018). Organic luminescent materials. Weinheim; New York, NY, USA: 340.
  24. Duarte, F. J., Hillman, L. W. (Eds). (1990). Dye Laser Principles with Applications (Quantum Electronics – Principles & Applications Series). Academic Press Inc, New York,
  25. Lambourne, R., Strivens, T. A. (1999). Paints and surface coatings. Theory and practice. Second ed. Wood head Publishing Ltd., Cambridge, England, 784.
  26. Makhlouf, A. S., Scharnweber, D. (2015). Handbook of Nanoceramic and Nanocomposite Coatings and Materials. Butterworth-Heinemann, Elsevier, 688. Available at: https://www.researchgate.net/profile/Zainab-Raheem-2/publication/333520255_ Handbook_of_Nanoceramic_and_Nanocomposite_Coatings_and_Materials_PDF Drivecom/links/5cf17254299bf1fb184e71d7/Handbook-of-Nanoceramic-and-Nanocomposite-Coatings-and-Materials-PDFDrivecom.pdf
  27. Pavelka, L. A., Burns, D. M., Johnston, R. P., Shinbach, E. S. (1992). Pat. № Articles exhibiting durable fluorescence. Int. Cl. B44F 1/04, G09F 13/20.№91311189.4; declareted: 06.12.1990; published: 10.06.92; Bul. № 92/24, 16. Available at: https://patents.google.com/patent/EP0489561A1.
  28. Alhhuthali, A., Low, I. M. (2013). Influence of halloy site nanotubes on physical and mechanical properties of cellulose fibers reinforced vinyl ester composites. Reinforced Plastics and Composites, 32(4). 233–247. Available at: https://doi:10.1177/0731684412467392
  29. Peng, Y., Daoyong T., Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Sci., 112–113, 75– Available at: https://doi.org/10.1016/j.clay.2015.05.001
  30. Lvov, Y., Wang, W., Zhang, L. (2016). Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Advanced materials. 28(6): 1227–12 Available at: https://doi.10.1002/adma.201502341
  31. Wei W., Minullina R., Abdullayev E. (2014). Enhance deficiency of antiseptics with sustained release from clay nanotubes. RSC Advances, 4, 488– Available at: https://doi:10.1039/C3RA45011B
  32. Liu, M., Jia, Z., Jia, D., Zhou, C. (2014). Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science, 39(8), 1498–1525. Available at: https://doi.org/10.1016/j.progpolymsci.2014.04.004
  33. Wan, L., Deng, C., Zhao, Z.-Y., Chen, H., Wang, Y.-Z. (2020). Flame Retardation of Natural Rubber: Strategy and Recent Progress (Review). Polymers, 12, 429–453. Available at: https://doi:10.3390/polym12020429
  34. Crawford, R., Ivanova E. (2015). Super hydrophobic surfaces. Elsevier Inc. Available at: https://books.google.com.ua/books/about/Superhydrophobic_Surfaces.html?id=1OecBAAAQBAJ&printsec=frontcover&source=kp_read_button&hl=en&redir_esc=y#v=onepage&q&f=false
  35. Bai, Y., Zhang, H., Shao, Y., Zhang, H., Zhu, J. (2021). Recent Progresses of Superhydrophobic Coatings in Different Application Fields: An Overview. Coatings, 11(2), 116. Available at: http://dx.doi.org/10.3390/coatings11020116
  36. Well-Chem. Available at: https://well-chem.prom.ua/ua/p273516782-gidrofobizator-dlya-tkanej.htmlDynasylan®F8815Available at:https://products.evonik.com/assets/31/43/ 163143.pdf