Influence of filter respirators on speech reasonability

 

Sergey Cheberiachko

Dnipro University of Technology

http://orcid.org/0000-0001-5866-4393

 

Yuriy Cheberiachko

Dnipro University of Technology

http://orcid.org/0000-0001-7307-1553

 

Dmitry Radchuk

Dnipro University of Technology

https://orcid.org/0000-0001-8034-541X

 

Oleg Deryugin

Dnipro University of Technology

http://orcid.org/0000-0002-2456-7664

 

Sharovatova Sharovatova

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-2736-2189

 

Tatiana Lutsenko

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0001-7373-4548

 

DOI: https://doi.org/10.52363/2524-0226-2022-36-17

 

Keywords: filter respirator, mobile phone, rate of speech, volume of speech, intelligibility of words

 

Аnnotation

The deterioration of the intelligibility of the words was determined during communication by mobile phone of the speakers in the filter respirator. There were 20 speakers graduates (male and female) aged 18 to 22 years who had participated in the research. They took turns in the room with a mobile phone and a laptop. The random words was appeared on the screen of devices which speakers in a filter respirator, told the listener in another room by a mobile phone located at a certain distance and near the ear. Hearing the word, the listener repeated it on the phone. Additionally, the following were controlled: the volume of the speech – with a noise level meter and the distance of the phone from the speaker – with a ruler. It was found that in the presented models of filter respirator the impact on the speech process is insignificant and ranges from statistical error from 2 % to 11 %. It is depend on the density of filter layers of materials and the degree of adhesion of the filter respirator to the user's face, which can affect facial expressions. Clarified when the volume of speech increases, their intelligibility increases too, but on the level of 70 dB it destabilizes and almost does not change. Studies have testified, when the rate of speech slows down twice, the intelligibility of participant´s language which using filter respirator improves to 5 %. There are some recommendations for improving speech intelligibility during communicating by mobile phone using a filter respirator.

 

References

  1. Scarano, A., Inchingolo, F., Lorusso, F. (2020). Facial skin temperature and discomfort when wearing protective face masks: thermal infrared imaging evaluation and hands moving the mask. International journal of environmental research and public health, 17(13), 4624. doi: 10.3390/ijerph17134624
  2. Tardif, J., Fiset, D., Zhang, Y., Estéphan, A., Cai, Q., Luo, C., Sun, D., Gosselin, F., Blais, C. (2017). Culture shapes spatial frequency tuning for face identification. Journal of Experimental Psychology: Human Perception and Performance. Nov, 43(2): 294–306. doi: 10.1037/xhp0000288
  3. Carbon, C-C. (2020). Wearing Face Masks Strongly Confuses Counterparts in Reading Emotions. Frontiers in Psychology, 11, 566886. doi: 10.3389/fpsyg.2020.566886
  4. Atcherson, S. R., Mendel, L. L., Baltimore, W. J., Patro, C., Lee, S., Pousson, M., Spann, M. J. (2017). The effect of conventional and transparent surgical masks on speech understanding in individuals with and without hearing loss. Journal of the American Academy of Audiology, 28, 58–67. doi: 10.3766/jaaa.15151
  5. Rahne, T., Fröhlich, L., Plontke, S., Wagner, L. (2021). Influence of surgical and № 95 face masks on speech perception and listening effort in noise. PLoSONE, 16(7), e0253874. doi: 10.1371/journal.pone.0253874
  6. Sommerstein, R., Fux, C. A., Vuichard-Gysin, D., Abbas, M., Marschall, J., Balmelli, C., Troillet, N., Harbarth, S., Schlegel, M., Widmer, A., Balmelli, C., Eisenring, M. C., Harbarth S., Marschall J., Pittet D., Sax H., Schlegel M., Schweiger A., Senn L., Troillet N., Widmer A. F.,Zanetti G. (2020). Risk of SARS-CoV-2 transmission by aerosols, the rational use of masks, and protection of healthcare workers from COVID-19. Antimicrobial resistance & infection control, 9, 100. doi: 10.1186/s13756-020-00763-0
  7. Viter, M. V., Kush, S. M. (2015). Otsinka rozbirlyvosti movy na osnovi formantno-modulyatsiynoho metodu [Assessment of speech intelligibility based on the formant-modulation method]. XIII All-Ukrainian scientific and practical conference of students, postgraduates and young scientists, 1–2. Available online: http://ptmip.ipt.kpi.ua/wp-content/uploads/sites/6/2014/06/viter.pdf
  8. Karamzina, L. A. Psykho-fiziolohichni modeli vidchuttya i spryynyattya movnykh syhnaliv: v chomu riznytsya vidtvorennya [Psychophysiological models of sensation and perception of speech signals: what is the difference in reproduction]. Ukrainian Journal of Medicine, 1(1), 58–61. Available online: http://nbuv.gov.ua/ UJRN/ujmbs_2016_1_14
  9. Mendel, L. L., Gardino, J. A., Atcherson, S. R. (2008). Speech understanding using surgical masks: a problem in health care. Journal of the American Academy of Audiology, 19, 686–95. doi: 10.1371/journal.pone.0253874
  10. Grange, J. A, Culling, J. F. (2016). The benefit of head orientation to speech intelligibility in noise. Journal of the American Academy of Audiology, 139, 703–712, doi: 10.1121/1.4941655
  11. Hampton, D., Culp-Roche, A., Hensley, A., Wilson, J., Otts, J. A., Thaxton-Wiggins, A., Fruh, S., Moser, D. K. (2020). Self-efficacy and satisfaction with teaching in online courses. Nurse educator, 45(6), 302–306. doi: 10.1097/NNE. 0000000000000805
  12. Coyne, K. M., Barker, D. J. (2014). Speech intelligibility while wearing full-facepiece air-purifying respirators. Journal of Occupational and Environmental Hygiene, 11(11), 751–756. doi: 10.1080/15459624.2014.908257
  13. Corey, R. M., Jones, U., Singer, A. C. (2020). Acoustic effects of medical, cloth, and transparent face masks on speech signals. Journal of the American Academy of Audiology, 148, 2371. doi: 10.1121/10.0002279
  14. Goldin, A., Weinstein, B., Shiman, N. (2020). How do medical masks degrade speech reception.Hearing review, 27, 8–9. Available online: https://hearingreview.com/hearing-loss/health-wellness/how-do-medical-masks-degrade-speech-reception
  15. Saeidi, R., Huhtakallio, I., Alku, P. (2016). Analysis of Face Mask Effect on Speaker Recognition. INTERSPEECH, 1800–1804. doi: 10.21437/Interspeech.2016-518
  16. Munro, K., Stone M. (2020). The challenges of facemasks for people with hearing loss. ENT & audiology. Available online: https://www.entandaudiologynews. com/features/audiology-features/post/the-challenges-of-facemasks-for-people-with-hea-ring-loss
  17. Official website of the Ukrainian Cultural Foundation. Test for communication in Ukrainian. Available online: https://www.moyamova.in.ua
  18. Saunders, G. H., Jackson, I. R., Visram, A. S. (2020). Impacts of face coverings on communication: An indirect impact of COVID-19. International journal of Audiology, 60(7), 495–506. doi: 10.1080/14992027.2020.1851401
  19. Waters, A. M., LeBeau, R. T., Craske, M. G. (2017). Experimental psychopathology and clinical psychology: an integrative model to guide clinical science and practice. Psychopathology review, 4(2), 112–128. doi: 10.5127/pr.038015
  20. Atcherson, S. R., Mendel, L. L., Baltimore, W. J., Patro, C., Lee, S., Pousson, M., Spann, M. J. (2017). The effect of conventional and transparent surgical masks on speech understanding in individuals with and without hearing loss. Journal of the American Academy of Audiology, 28, 58–67. doi: 10.3766/jaaa.15151
  21. Maksymenko, S., Terletsʹka, L., Hlavnyk, O. (2004). Psykholohichnyy instrumentariy. Pamʺyatʹ dytyny [Psychological tools. A child's memory]. К.: Hlavnyk, 112. Available online: https://library.udpu.edu.ua/library_files/ece/6660_01.pdf (In Ukrainian)
  22. Doutres, O., Salissou, Ya., Atalla, N., Panneton R. (2010). Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube. Applied acoustics, 71, 506–509. Availableonline:https://hal.archives-ouvertes.fr/hal-00508767
  23. Chodosh, J., Weinstein, B. E., Blustein, J. (2020). Face masks can be devastating for people with hearing loss [Editorial]. British Medical Journal, 370, m2683. doi: 10.1136/bmj.m2683