Мathematical model of heating of propane-butane gas cylinders in residential buildings

 

Klyuchka Yurii

National University of Urban Economy named by O.M. Beketov

http://orcid.org/0000-0003-1066-4217

 

Doroshenko Daria

National University of Civil Protection of Ukraine

http://orcid.org/0000-0003-4222-9359

 

DOI: https://doi.org/10.52363/2524-0226-2025-41-13

 

Keywords: propane-butane, heating, unsteady heat conduction, explosion, cylinder, emergency

 

Аnnotation

 

This study investigates propane-butane gas cylinders and develops a mathematical model to predict the behavior of such systems under thermal influence. In the first stage, it was established that the share of heat required for gas heating ranges from 0.73 to 0.8, and the cylinder material can absorb from 20% to 100% of the heat, which significantly affects the heating dynamics. For cylinders with volumes of 12.7 and 26.2 liters, only at fill ratios of 0.24 and 0.36, respectively, does the amount of heat required for gas heating exceed the amount for cylinder heating. These results indicate a significant contribution of the cylinder material itself to heat absorption during cylinder heating. The second stage addresses the urgent safety problem of residential and industrial facilities caused by the widespread use of propane-butane, which is a highly flammable and explosive substance. Attention is paid to the risks associated with heating propane-butane cylinders, which can lead to increased pressure and depressurization, causing an explosion according to the BLEVE (Boiling Liquid Expanding Vapour Explosion) scenario. The necessity of developing a mathematical model is substantiated, which would allow predicting the change in the temperature regime of cylinder components (walls, liquid, and gas) and the pressure of propane-butane within it in real-time under the influence of external factors, taking into account complex heat exchange processes. The developed model is based on the unsteady heat conduction equation for the cylinder body with third-kind boundary conditions on the outer and inner walls of the cylinder. The model construction considers the properties of the cylinder material (thermal conductivity, heat capacity, density, thermal expansion coefficient), its geometry (surface area, wall thickness, shape), etc. The obtained model will subsequently allow evaluating the temperature distribution in the cylinder wall, predicting critical values leading to failure and possible explosion.

 

References

 

  1. Doroshenko, O., Klyuchka, Y. P., Mykhaylyuk, O. P. (2020). Analiz naslidkiv vybukhiv ta umov utvorennya hazopovitryanykh sumishey u zhytlovykh budivlyakh. Problemy pozhezhnoyi bezpeky, 48, 37–44. Available at: http://nbuv.gov.ua/UJRN/Ppb_2020_48_8
  2. DSTU IEC/ISO 31010:2013. (2013). Keruvannya ryzykom. Metody zahalʹnoho otsinyuvannya ryzyku (IEC/ISO 31010:2009, IDT). Available at: https://khoda.gov.ua/image/catalog/files/dstu%2031010.pdf
  3. Analitychna dovidka pro pozhezhi ta yikh naslidky v Ukrayini za 12 misyatsiv 2024 roku. Kyiv, 39. Available at: https://dsns.gov.ua/upload/2/3/0/1/6/1/2/analiticna-dovidka-pro-pozezi-za-12-misiaciv-2024-na-sait.pdf
  4. Analitychna dovidka pro pozhezhi ta yikh naslidky v Ukrayini za 12 misyatsiv 2023 roku. Available at: https://dsns.gov.ua/upload/2/0/2/2/3/2/1/2023-rik.pdf
  5. Klyuchka, P., Doroshenko, D. O. (2025). Eksperymentalʹna otsinka tysku propan-butanu v baloni pry yoho nahrivanni. Stalyy rozvytok mist: postvoyennyy period: Materialy Vseukrayinsʹkoyi naukovo-tekhnichnoyi konferentsiyi. Kharkiv: KHNUMH im. O. M. Beketova, 237–239. Available at: https://science.kname.edu.ua/images/dok/konferentsii/stalyirozvytok2019/2025/C_3_Budivelna_ta_civilna_inzeneria_25.pdf
  6. Huseynov, R. N., Panchuk, Y. V. (2021). Osnovni rozrakhunkovi metody doslidzhennya obstavyn i mekhanizmu tekhnohennykh vybukhiv. Teoriya ta praktyka sudovoyi ekspertyzy i kryminalistyky, 23, 258– doi: 10.32353/khrife.1.2021.20
  7. Chengjun, Y., Li, C., Li, Z, Feng, B., Xu., R. (2025). Research on the hazards of gas leakage and explosion in a full-scale residential building. Defence Technology, 43, 168–181. doi: 10.2139/ssrn.4770361
  8. Turgut, , Gurel, M., Pekgokgoz, R. (2013). LPG explosion damage of a reinforced concrete building: A casestudy in Sanliurfa, Turkey. Engineering Failure Analysis, 32, 220–235. doi:10.1016/j.engfailanal.2013.04.004
  9. Krzysiak, Z., Samociuk, W., Bartnik, G., Plizga, K., Dziki, D., Kaliniewicz, Z., Nieoczym, A., Wyciszkiewicz, A., Otto, T. (2017). Analysis of tank safety with propane-butane on LPG distribution station. Pol. J. Chem. Technol, 19, 99–102. doi: 1515/pjct-2017-0074
  10. Baobin, , Wenjie, Z., Chuangnan, R., Shaopeng, S., Chenhui, G. (2023). Study of the effect of gas baffles on the prevention and control of gas leakage and explosion hazards in autility tunnel. Applied Sciences, 13, 7, 1–19. doi.org/10.3390/app13074264
  11. Ismail, , Sharif, K., Udin, Z., Hassan, M., Nawi, M., Hamid, Z., Ibrahim, J., Othman, A. (2018). A risk assessment in natural gas supply. International Journal of Supply Chain Management, 7, 4, 180–184. doi.org/10.59160/ijscm.v7i4.2371
  12. Tindal, J. (2018). Forensic engineering analysis of an explosion allegedly caused by an overfilled propane cylinder. Journal of the NAFE, 35, 2, 81–99. doi:10.51501/jotnafe.v35i2.62
  13. Nick, C., Mark, S., Martin, S., Peter, F., et al. (2023). Fire investigation: a primer for courts, 1–68. Available at: https://royalsociety.org/-/media/about-us/programmes/science-and-law/royal-society-fire-investigation.pdf
  14. Chmielewski, R., Bąk, A. (2021). Analysis of the safety of residential buildings under gas explosion loads. Journal of Building Engineering, 43.doi:10.1016/j.jobe.2021.102815
  15. Tomlin, G. (2015). Gas explosions in dwellings, the effects of interconnected rooms and obstacles, and the interpretation of thermal damage, 1–Available at: https://etheses.whiterose.ac.uk/id/eprint/10599/
  16. Pasport kompozitnogo gazovogo balonu. Available at: https://gazballon.com.ua/wp-content/uploads/2016/11/pasport.pdf
  17. Drahanov, B.K., Bessarab, O., Dolinsʹkyy, A.A., Lazorenko, V.O., Mishchenko, A.B. (2005). Teplotekhnika. Kyyiv, 400. Availableat:https://dspace.nuft.edu.ua/server/api/core/bitstreams/9bfb192a-a15b-4685-aa97-975ec8978dc3/content
  18. Ryabova, I. B., Saychuk, I. V., Sharshanov, A. Y. (2002). Termodynamika i teploperedacha u pozhezhniy spravi. Kharkiv, 352. Available at: http://www.univer.nuczu.edu.ua/tmp_metod/467/Titul.pdf

 

Software implementation of assessment of buildings' resistance to progressive collapse

 

Maiboroda Roman

National University of Civil Protection of Ukraine

http://orcid.org/0000-0002-3461-2959

 

Otrosh Yurii

National University of Civil Protection of Ukraine

http://orcid.org/0000-0003-0698-2888

 

DOI: https://doi.org/10.52363/2524-0226-2025-41-12

 

Keywords: progressive collapse, fire, explosion, LIRA–SAPR, computer model, load combination

 

Аnnotation

 

A computer model has been developed that allows assessing the resistance of a reinforced concrete monolithic building to progressive collapse under the influence of the combined action of fire and internal deflagration explosion. For this purpose, a spatial physically and geometrically nonlinear model of a six-story industrial building was created. The model takes into account the combined operation of load-bearing structures, changes in the thermophysical and mechanical properties of materials under the influence of elevated temperatures, the formation of local destruction, redistribution of internal forces and dynamic effects from explosive loading. The model is implemented in the LIRA-SAPR software package using the “thermal conductivity” module to take into account the temperature effect of a standard fire regime lasting 60 minutes and the “dynamics in time” settings to simulate an impulse load from an explosion of 15 kPa. As a result of the modeling, it was established that the isolated action of a fire leads to an increase in the deflections of the floor slabs by 2.6 times, and an internal explosion leads to an increase in the deflection of the bottom slab by 5.2 times relative to the normal state. The greatest danger is the scenario of the combined impact of fire and explosion, in which the deflection of the lower plate reached 55.8 mm, which exceeds the initial value by 8.3 times. Such deformations, when combined, can potentially cause the loss of the load-bearing capacity of structures and the development of progressive collapse of the building. The results obtained form the basis for increasing the level of structural safety of buildings and reducing the risk of loss of human lives in emergency situations. The proposed approach provides the possibility of a comprehensive assessment of the resistance of reinforced concrete monolithic buildings to progressive collapse under the combined action of thermal and explosive loads, as well as the justification and implementation of effective measures to increase their reliability and survivability.

 

References

 

  1. Otrosh, Yu., Maiboroda, R., Romin, A. (2023). Doslidzhennia metodyk rozrakhunku prohresuiuchoho obvalennia. Mekhanika ta matematychni metody, 2, 25–40. doi: 10.31650/2618–0650–2023–5–2–25–40
  2. Skob, Y., Dreval, Y., Vasilchenko, A., Maiboroda, R. (2023). Selection of Material and Thickness of the Protective Wall in the Conditions of a Hydrogen Explosion of Various Power. Key Engineering Materials, 952, 121–129. doi: 10.4028/p–ST1VeT
  3. Maiboroda, R., Zhuravskij, M., Otrosh, Yu., Karpuntsov, V. (2024). Determination of the Required Area of Easily Removable Structures to Protect Against Progressive Collapse. Key Engineering Materials, 1004, 73–83. doi: 10.4028/p–V0xA6H
  4. Tanapornraweekit, G., Haritos, N., Mendis, P. (2011). Behavior of FRP–RC plates under multiple independent air blasts. Journal of Performance of Constructed Facilities, 25(2), 433–440. doi: 10.1061/(ASCE)CF.1943–5509.0000191
  5. Liu, Y., Yan, J., Huang, F. (2018). Behavior of reinforced concrete beams and columns subjected to blast loading. Defense Technology, 14(5), 550–559. doi: 10.1016/j.dt.2018.07.026
  6. DSTU–N B EN 1991–1–7:2010. Yevrokod 1. Dii na konstruktsii. Chastyna 1–7. Zahalni dii. Osoblyvi dynamichni vplyvy. Chynnyi vid 01.07.2013 r. Vyd. ofits. Kyiv : Tekhnichnyi komitet standartyzatsii «Metalobudivnytstvo», 81
  7. DSTU–N B EN 1990:2008. Yevrokod. Osnovy proiektuvannia konstruktsii. Chynnyi vid 01.07.2009 r. Vyd. ofits. Kyiv : Tekhnichnyi komitet z standartyzatsii «Armatura dlia zalizobetonnykh konstruktsii», 105.
  8. Shan, S., Wang, H., Li, S., Wang, B. (2023). Evaluation of progressive collapse resistances of RC frame with contributions of beam, slab and infill wall. Structures, 53, 1463–1475. doi: 10.1016/j.istruc.2023.04.114
  9. Biloshitska, N., Biloshitsky, M., Tatarchenko, Z., Dyachuk, B. (2022). Mathematical modeling of building structures in complex conditions of chemical production. Urban planning and territorial planning, 81, 59–69. doi: 10.32347/2076–815x.2022.81.59–69
  10. Almusallam, T., Elsanadedy, H., Abbas, H., Alsayed, S., Al–Salloum, Y. (2010). Progressive collapse analysis of a RC building subjected to blast loads. Structural Engineering and Mechanics, 36(3), 301–319. doi: 10.12989/SEM.2010.36.3.301
  11. Ding, Y., Chen, Y., Shi, Y. (2016). Progressive collapse analysis of a steel frame subjected to confined explosion and post–explosion fire. Advances in Structural Engineering, 19(11), 1780–1796. doi:10.1177/1369433216649381
  12. Jahromi, H., Izzuddin, B., Nethercot D. (2012). Robustness assessment of building structures under explosion. Buildings, 2(4), 497–518. doi: 10.3390/buildings2040497
  13. Luccioni, B., Ambrosini, R., Danesi, R. (2004). Analysis of building collapse under blast loads. Engineering Structures, 26(1), 63–71. doi: 10.1016/j.engstruct.2003.08.011
  14. Maiboroda, R., Otrosh, Yu. (2023). Doslidzhennia metodyky rozrakhunku stiikosti do prohresuiuchoho obvalennia budivel vnaslidok pozhezhi ta vybukhu. Komunalne hospodarstvo mist: nauk.–tekhn. zb. Seriia: Tekhnichni nauky ta arkhitektura, 3(191), 115–127. doi: 10.31650/2618–0650–2023–5–2–25–40
  15. DSTU 9294:2024. Rozrakhunok budivel na stiikist do prohresuiuchoho (neproportsiinoho) obvalennia. Chynnyi vid 01.03.2025 r. Vyd. ofits. Kyiv : Tekhnichnyi komitet standartyzatsii «Zakhyst budivel ta sporud», Derzhavne pidpryiemstvo «Derzhavnyi naukovo–doslidnyi instytut budivelnykh konstruktsii», 70.
  16. DSTU 9176:2022. Pozhezhna bezpeka. Metody vyznachennia parametriv lehkoskydnykh konstruktsii dlia prymishchen ta budynkiv. Osnovni polozhennia. Kyiv : Tekhnichnyi komitet standartyzatsii «Pozhezhna bezpeka ta protypozhezhna tekhnika», 23.
  17. DSTU–N B EN 1991–1–7:2010. Yevrokod 1. Dii na konstruktsii. Chastyna 1–7. Zahalni dii. Osoblyvi dynamichni vplyvy. Kyiv : Tekhnichnyi komitet standartyzatsii «Metalobudivnytstvo», 100.
  18. DSTU B V.1.1–36:2016. Vyznachennia katehorii prymishchen, budynkiv ta zovnishnikh ustanovok za vybukhopozhezhnoiu ta pozhezhnoiu nebezpekoiu. Kyiv : UkrNDITsZ, 34.

 

 

Determining the minimum water pressure for supplying it for cooling the tank

 

Basmanov Oleksii

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-6434-6575

 

Oliinik Volodymyr

National University of Civil Protection of Ukraine

http://orcid.org/0000-0002-5193-1775

 

Morshch Evgen

State Research Institute of Cybersecurity and

Information Protection Technologies

http://orcid.org/0000-0003-0131-2332

 

Kalchenko Yaroslav

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-3482-0782

 

DOI: https://doi.org/10.52363/2524-0226-2025-41-10

 

Keywords: fire nozzle, cooling water supply, water jet trajectory, flat trajectory

 

Аnnotation

 

A model of the water jet motion after exiting the fire nozzle has been constructed. The model is based on a system of linear homogeneous and linear inhomogeneous 2nd-order differential equations with initial conditions that describe the motion of an elementary volume of water in a gravitational field and take into account air drag. Their solving with the initial conditions gives the trajectory of the water jet motion depending on the horizontal and vertical components of the initial jet velocity. The dependence of the water pressure on the horizontal component of the water jet velocity at the fire nozzle provided that the jet reaches a given point on the tank shell has been constructed. It is shown that the dependence is a downward convex function with a single minimum point. Only one trajectory of the jet motion corresponds to the minimum water pressure, which reaches a given point. An increase in the pressure leads to the appearance of two possible trajectories, one of which is grazing, and the other can be grazing or flat. It is shown that the condition for the trajectory to be flat is that the horizontal component of the velocity exceeds a certain limit value that is proportional to the distance to the tank. An algorithm for determining the minimum water pressure for supplying to a given point on the tank shell by a flat trajectory is constructed. The algorithm uses Newton’s method to numerically solve the conditional optimization problem. It is shown that for a distance to the tank (5÷30) m the water pressure should be (23÷58) m for tanks 12 m high and (37÷70) m for tanks 18 m high. The obtained results can be used to determine the locations of fire nozzles for supplying water to cool tanks while developing a plan for localizing and eliminating fires in a oil tank storage and to reduce water losses due to the splattering of the jet after hitting the tank.

 

References

 

  1. Khan, F. I., Abbasi, S. A. (2001). An assessment of the likelihood of occurrence, and the damage potential of domino effect (chain of accidents) in a typical cluster of industries. Journal of Loss Prevention in the Process Industries, 14(4), 283–306. doi: 10.1016/S0950-4230(00)00048-6
  2. Yang, R., Khan, F., Neto, E. T., Rusli, R., Ji, J. (2020). Could pool fire alone cause a domino effect? Reliability Engineering & System Safety, 202, 106976. doi: 10.1016/j.ress.2020.106976
  3. Reniers, G., Cozzani, V. (2013). Features of Escalation Scenarios. Domino Effects in the Process Industries, 30–42. doi: 10.1016/B978-0-444-54323-3.00003-8
  4. Amin, M. T., Scarponi, G. E., Cozzani, V., Khan, F. (2024). Improved pool fire-initiated domino effect assessment in atmospheric tank farms using structural response. Reliability Engineering & System Safety, 242, 109751. doi: 10.1016/j.ress.2023.109751
  5. Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, (1), 92–99. doi: 10.32434/0321-4095-2019-122-1-92-99
  6. Odynets, A., Nizhnyk, V., Sizikov, O., Feschuk, Y., Ballo, Y., Klymas, R., Zhykharev, O. (2022). Justification of additional measures for operational actions during fire extinguishing in petroleum products warehouses in conditions of combat. Scientific Bulletin: Сivil Protection and Fire Safety, (1(13)), 72–79. doi: 10.33269/nvcz.2022.1(13).72-79
  7. NAPB 05.035 – 2004. Instructions for extinguishing fires in tanks with oil and petroleum products.
  8. Abramov, Y., Basmanov, O., Salamov, J., Mikhayluk, A., Yashchenko, O. (2019). Developing a model of tank cooling by water jets from hydraulic monitors under conditions of fire. Eastern-European Journal of Enterprise Technologies, 1(10(97)), 14–20. doi: 10.15587/1729-4061.2019.154669
  9. Basmanov, O., Oliinyk, V., Afanasenko, K., Hryhorenko, O., Kalchenko, Y. (2024). Building a model of oil tank water cooling in the case of fire. Eastern-European Journal of Enterprise Technologies, 5(10(131)), 53–61. doi: 10.15587/1729-4061.2024.313827
  10. Saber, A., El-Nasr, M. A., Elbanhawy, A. Y. (2022). Generalized formulae for water cooling requirements for the fire safety of hydrocarbon storage tank farms. Journal of Loss Prevention in the Process Industries, 80, 104916. doi: 10.1016/j.jlp.2022.104916
  11. Oliinyk, V., Basmanov, O., Shevchenko, O., Khmyrova, A., Rushchak, I. (2025). Building a model of choosing water supply rate to cool a tank in the case of a fire. Eastern-European Journal of Enterprise Technologies, 1(10(133)), 45–51. doi: 10.15587/1729-4061.2025.323197
  12. Wassenberg, J. R., Stephan, P., Gambaryan-Roisman, T. (2019). The influence of splattering on the development of the wall film after horizontal jet impingement onto a vertical wall. Experiments in Fluids, 60(11). doi: 10.1007/s00348-019-2810-6
  13. Qian, S., Zhu, D. Z., Xu, H. (2022). Splashing generation by water jet impinging on a horizontal plate. Experimental Thermal and Fluid Science, 130, 110518. doi: 10.1016/j.expthermflusci.2021.110518
  14. Kim, H., Choi, H., Kim, D., Chung, J., Kim, H., Lee, K. (2020). Experimental study on splash phenomena of liquid jet impinging on a vertical wall. Experimental Thermal and Fluid Science, 116, 110111. doi: 10.1016/j.expthermflusci.2020.110111
  15. Hu, B., Zhao, T., Shi, Z., Li, W., Lin, Q., Liu, H., Wang, F. (2024). Spreading and splashing of liquid film on vertical hot surface by inclined jet impingement. Experimental Thermal and Fluid Science, 154, 111147. doi: 10.1016/j.
    2024.111147
  16. Liu, X., Wang, J., Li, B., Li, W. (2018). Experimental study on jet flow characteristics of fire water monitor. The Journal of Engineering, 2019(13), 150–154. doi: 10.1049/joe.2018.8950
  17. Abramov, Y., Basmanov, O., Krivtsova, V., Khyzhnyak, A. (2020). Estimating the influence of the wind exposure on the motion of an extinguishing substance. EUREKA: Physics and Engineering, 5, 51–59. doi: 10.21303/2461-4262.2020.001400
  18. DSTU B V.2.6-183:2011. Vertical cylindrical steel tanks for oil and oil products. General technical conditions.

 

 

Мodeling the deployment of rod structures as multilink pendulums under microgravity conditions

 

Kalynovskyi Andrii

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-1021-5799

 

Kutsenko Leonid

National University of Civil Protection of Ukraine

http://orcid.org/0000-0003-1554-8848

 

Sukharkova Olga

National University of Civil Protection of Ukraine

http://orcid.org/0000-0003-1033-4728

 

Nazarenko Sergii

National University of Civil Protection of Ukraine

https://orcid.org/0000-0003-0891-0335

 

Diachkov Oleksandr

National University of Civil Protection of Ukraine

http://orcid.org/0000-0002-7978-0024

 

Hrynko Yurii

National University of Civil Protection of Ukraine

http://orcid.org/0000-0003-1957-025X

 

DOI: https://doi.org/10.52363/2524-0226-2025-41-11

 

Keywords: core construction, process of opening in space, multi-link pendulum, Lagrange equation

 

Аnnotation

 

A new approach to modeling the transformation of rod structures in microgravity by investigating elements of their frameworks, represented as multi-link pendulums. A geometric model is presented for the deployment of such structures under the influence of pulsed thrusts from jet engines mounted at the endpoints of the links. The deployment mechanism is based on initiating inertial motion without continuous external control after a brief impulse application. The dynamics of the deployment process are described using Lagrange’s equations of the second kind, with particular emphasis on adapting the formulation to microgravity conditions, where potential energy can be considered negligible. This enables accurate modeling of structure deployment driven solely by kinetic energy, without further external control. As a result of the impulse action, the pendulum deploys by inertia, justifying the use of the term «inertial deployment method» for the frame. Mathematical models and a computer animation method are developed to predict the time evolution of link positions and to determine the fixation moment («stop code») for achieving the desired structure geometry. The influence of impulse magnitude errors on deployment accuracy is studied, and acceptable tolerance limits are established to maintain a satisfactory configuration. Test examples are provided for the deployment of double-link and four-link pendulums, as well as special configurations such as the Magdeburg pendulum and the Thomson-Tait pendulum. The obtained results are well-suited for animation to visualize the dynamics of rod structure formation—for example, illustrating the deployment of support frameworks for solar mirrors or space antennas. The proposed methods allow for the simplification of deployment technologies for large space objects, eliminating the need for complex electromechanical drives and thus reducing the mass and cost of space missions.

 

References

 

1 Alpatov, A. P., Horbulyn, V. P. (2013). Kosmycheskye platformy dlia or-bytalnykh promyshlennykh kompleksov: problemy i perspektivy. Visnyk NAN Ukrainy, 12, 26–38.

  1. Alpatov, A. P., Belonozhko, P. A., Belonozhko, A. A., Vytushkyn, A. A. (2007). Bolshye otrazhaiushchye poverkhnosty v kosmose. Antenny sputnykoi sviazy. Systemni tekhnolohii, 3(50),73–87.
  2. Alpatov, A. P., Belonozhko, P. A., Belonozhko, A. A., Vytushkyn, A. A. (2007). Bolshye otrazhaiushchye poverkhnosty v kosmose. Radoteleskopy, solnech-nye kontsentratory, ploskye otrazhately. Systemni tekhnolohii, 3(50), 88–101.
  3. Hoyt, R. (2015). SpiderFab. Architecture for On-Orbit Manufacture of Large Aperture Space Systems. FISO Briefing, 33.
  4. Alpatov, A. P. (2013). Dynamika perspektyvnykh kosmichnykh aparativ. Visnyk NAN Ukrainy, 7, 6–13.
  5. Udwadia, F. E., Koganti, P. B. (2015). Dynamics and control of a multi-body planar pendulum. Nonlinear Dynamics, 82, 1–2, 1059–1059. doi: 10.1007/s11071-015-2362-0
  6. Lope, A. M., Machado, J. A. (2017). Dynamics of the N-link pendulum: a fractional perspective. International Journal of Control, 90, 6, 1192–1192.
  7. Fritzkowski, P., Kaminski, H. (2008). Dynamic of a rope as a rigid multibody system. Journal of mechanics of materials and structures, 3, 6, 1059–1075.
  8. Szuminski, W. (2014). Dynamics of multiple pendula without gravity. Chaot-ic Modeling and Simulation, 57–67. Available at: https://www.researchgate.net/

publication/285143816_Dynamics_of_multiple_pendula_without_gravity

  1. Pisculli, A., Felicetti, L., Gasbarri, P., Palmerini, G B., Sabatini, M. (2013). Deployment analysis and control strategies of flexible space manipulators, in: Pro-ceedings of the International Astronautical Congress. China. Available at: https://www.researchgate.net/publication/288131553_Deployment_analysis_and_control_strategies_of_flexible_space_manipulators
  2. Sakovsky, M., Pellegrino, S., Mallikarachchi, H. M. Y. C. (2016). Folding and Deployment of Closed Cross-Section Dual-Matrix Composite Booms. 3rd AIAA Spacecraft Structures Conference. doi:10.2514/6.2016-0970
  3. Ma, X., An, N., Cong, Q. et al. (2024). Design, modeling, and manufactur-ing of high strain composites for space deployable structures. Communications Engi-neering, 78. doi:10.1038/s44172-024-00223-2
  4. Deployable Perimeter Truss with Blade Reel Deployment Mechanism. (2016). NASA’s Jet Propulsion Laboratory, Pasadena, California.Tuesday. Available at: https://www.techbriefs.com/component/content/article/tb/techbriefs/mechanics-and-machinery/24098
  5. Shamakhanov, V. K., Khoroshylov, S. V. (2025). Osoblyvosti stvorennia ta vykorystannia kosmichnykh strilopodibnykh konstruktsii, shcho transformuiutsia. Journal of Rocket-Space Technology, 34(1), 3–20. doi: 10.15421/4525015
  6. Jennings, A. L., Black, J., Allen, C. (2013). Empirically Bounding of Space Booms with Tape Spring Hinges. Shock and Vibration, 20, 503–518. doi:10.3233/SAV-130764
  7. Liu, T.-W., Bai, J.-B., Fantuzzi, N. (2022). Folding behavior of the thin-walled lenticular deployable composite boom: Analytical analysis and many-objective optimization. Mechanics of Advanced Materials and Structures, 30, 11, 2221–2239. doi: 10.1080/15376494.2022.2053766
  8. Yang, H., Guo, H., Wang, Y., Feng, J., Tian, D. (2020). Analytical solution of the peak bending moment of an M boom for membrane deployable structures. In-ternational Journal of Solids and Structures, 206, 236–246. doi: 10.1016/j.ijsolstr.

2020.09.005

  1. Martınez-Alfaro, H. Obtaining the dynamic equations, their simulation, and animation for N pendulums using Maple. Available at: https://www.researchgate.

net/publication/228781742_Obtaining_the_dynamic_equations_their_simulation_and_animation_for_n_pendulums_using_Maple

  1. Xu, Y., Guan, Fu-ling, Zheng, Y., Zhao, M. (2012). Kinematic Analysis of the Deployable Truss Structures for Space Applications. J. Aerosp. Technol. Manag., Sao Jose dos Campos, 4, 4, 453–462. doi: 10.5028/jatm.2012.04044112
  2. Hoyt, R., Cushing, J., Slostad, J. (2013). SpiderFab: Process for On-Orbit Construction of Kilometer­Scale Apertures. NASA Goddard Space Flight Center 8800 Greenbelt Road Greenbelt, MD 20771, 53.
  3. Kutsenko, L., Shoman, O., Semkiv, O., Zapolsky, L., Adashevskay, I., Danylenko, V., Semenova-Kulish, V., Borodin, D., Legeta, J. (2017). Geometrical modeling of the inertial unfolding of a multi-link pendulum in weightlessness. East-ern-European Journal of Enterprise Technologies, 6/7(90), 42–50.
  4. Kutsenko, L. M. (2017). Iliustratsii do heometrychnoho modeliuvannia in-ertsiinoho rozkryttia bahatolankovoho maiatnyka u nevahomosti. Available at: http://repositsc.nuczu.edu.ua/handle/123456789/4868
  5. Kutsenko, L., Semkiv, O., Zapolskiy, L., Shoman, O., Kalinovskiy, A., Pik-sasov, M., Adashevska, I., Shelihova, І., Sydorenko, О. (2018). Geometrical model-ing of the process of weaving a cloth in weightlessness using the inertial unfolding of dual pendulum. Eastern-European Journal of Enterprise Technologies, 1/7 (91), 37–46. doi: 10.15587/1729-4061.2017.114269
  6. Kutsenko, L. (2018). Iliustratsii do heometrychnoho modeliuvannia protsesu rozkryttia sterzhnevykh konstruktsii u nevahomosti. Available at: http://repositsc.

nuczu.edu.ua/handle/123456789/6335

  1. Kutsenko, L., Semkiv, O., Zapolskiy, L., Shoman, O., Ismailova, N., Vasy-liev, S., Adashevska, I., Danylenko, V., Pobidash, A. (2018) Geometrical modeling of the shape of a multilink rod structure in weightlessness under the influence of pulses on the end points of its links. Eastern-European Journal of Enterprise Technol-ogies, 2/7(92), 44–58. doi: 10.15587/1729-4061.2018.126693
  2. Chaotic Pendulum. Harvard Natural Sciences Lecture Demonstrations. Available at: https://sciencedemonstrations.fas.harvard.edu/presentations/chaotic-pendulum
  3. Space_Structure_Systems_Laboratory. Self deployable truss, 2016. YouTube. URL: https://www.youtube.com/watch?v=sH7NHZwPzMM
  4. Qi, X., Deng, Z, Li, B, Liu, R, Guo, H. (2013). Design of Large Deployable Networks Constructed by Myard Linkages. CEAS Space Journal, 5, 147–155. doi: 10.1007/s12567-013-0036-7
  5. D. ter Haar. (1971). Elements of Hamiltonian mechanics Pergamon Press Second Edition University Reader in Theoretica 1 Physics. Oxford, 212.

 

 

Study of the influence of sodium hexametaphosphate on the properties of silica-containing fireproofing coating for building materials

 

Lysak Nataliia

National University of Civil Protection of Ukraine

https://orcid.org/0000-0001-5338-4704

 

Skorodumova Olga

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-8962-0155

 

Chernukha Anton

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-0365-3205

 

Goncharenko Yana

National University of Civil Protection e of Ukraine

https://orcid.org/0000-0002-1766-3244

 

Melezhyk Roman

National University of Civil Protection of Ukraine

http://orcid.org/0000-0001-6425-4147

 

DOI: https://doi.org/10.52363/2524-0226-2025-41-9

 

Keywords: fire-retardant silica-containing coatings, sodium hexametaphosphate, building materials, heat resistance, fire resistance, wood, polystyrene foam

 

Аnnotation

 

The composition of a silicophosphate composition intended for fire protection of building materials was developed. Solutions of liquid glass, acetic acid and sodium hexametaphosphate were used as starting components. The influence of the content of the phosphorus-containing additive on the rheological properties of silicic acid sols was studied. By spectrophotometry, it was established that the latent coagulation time in the entire range of the studied content of sodium hexametaphosphate is ~20 minutes. The highest values of optical density were recorded for a sol with an additive content of 0.3 %. The probability of the influence of electrostatic and steric effects, which depend on the concentration of the phosphorus-containing additive, on the stability of the sol was considered. It is assumed that the minimum value of sol survivability at 0.3 % of the additive is associated with a decrease in the ζ-potential and compression of the double electric layer. The results of infrared spectroscopy confirmed the hypothesis of two different mechanisms of polycondensation in different intervals of hexametaphosphate content. At a content below 0.3 %, a linear mechanism of polycondensation was noted, above 0.3 % – a reticular one. Fire tests were carried out on samples of wood and extruded polystyrene foam coated with compositions of the studied composition. The best fire-retardant properties were recorded for systems with a sodium hexametaphosphate content of 0.1–0.3 %. Processing of wood samples allowed transferring the material to the “hard-to-flame” group, the mass losses of the samples were less than 10 %. Samples of extruded polystyrene foam did not support combustion at an additive content of 0.1 % or did not burn at all at a content of 0.3 %, mass losses were less than 3 %. The effect of the number of coating layers on the effectiveness of its fire-retardant action was assessed: for wood in the range of hexametaphosphate concentrations of 0.1-0.3 %, three-layer coatings were the most heat-resistant, for extruded polystyrene foam at a content of 0.3 % – one- and two-layer.

 

References

 

  1. Hou, X., Guo, L., Wang, F. (2021). Inhibiting effects of three phosphates on coal spontaneous combustion. International Journal of Coal Preparation and Utilization, 42(10), 3054–3069. doi: 10.1080/19392699.2021.1932844
  2. Zhu, Z., Rao, W., Kang, A., Liao, W., Wang, Y. (2018). Highly effective flame retarded polystyrene by synergistic effects between expandable graphite and aluminum hypophosphite. Polymer Degradation and Stability, 154, 1–9. doi: 10.1016/j.polymdegradstab.2018.05.015
  3. Ji, W., Yao, Y., Guo, J., Fei, B., Gu, X., Li, H., Sun, J., Zhang, S. (2020). Toward an understanding of how red phosphorus and expandable graphite enhance the fire resistance of expandable polystyrene foams. Journal of Applied Polymer Sci-ence, 137(35). doi: 10.1002/app.49045
  4. Liu, J., Guo, Y., Chang, H., Li, H., Xu, A., Pan, B. (2018). Interaction between magnesium hydroxide and microencapsulated red phosphorus in flame‐retarded high‐impact polystyrene composite. Fire and Materials, 42(8), 958–966. doi: 10.1002/fam.2650
  5. Baby, A., Tretsiakova-McNally, S., Arun, M., Joseph, P., Zhang, J. (2020). Re-active and Additive Modifications of Styrenic Polymers with Phosphorus-Containing Compounds and Their Effects on Fire Retardance. Molecules, 25(17), 3779. doi: 10.3390/molecules25173779
  6. Zhu, Z., Xu, Y., Liao, W., Xu, S., Wang, Y. (2017). Highly Flame Retardant Expanded Polystyrene Foams from Phosphorus–Nitrogen–Silicon Synergistic Adhe-sives. Industrial & Engineering Chemistry Research, 56(16), 4649–4658. doi: 10.1021/acs.iecr.6b05065
  7. Lysak, N., Skorodumova, O., Chernukha, A. (2023). Development of a fire-proof coating containing silica for polystyrene. Problems of Emergency Situations, 2(38), 192–202. doi: 10.52363/2524-0226-2023-38-10
  8. Lysak, N., Skorodumova, O., Chernukha, A., Goncharenko, Y., Melezhyk, R. (2024). Silicophosphate fireproof coatings for building materials. Problems of Emer-gency Situations, 1(39), 262–271. doi: 10.52363/2524-0226-2024-39-19
  9. Li, Y., Guo, A., Xu, X., Xue, Y., Yan, L., Hou, F., Liu, J. (2022). Preparation and properties of highly elastic, lightweight, and thermally insulating SiO2 fibrous porous materials. Materials, 15(9), 3069. doi: 10.3390/ma15093069
  10. Zhang, Y., Liu, H., Liu, J., Tong, R. (2019). Effect of sodium hexametaphosphate and trisodium phosphate on dispersion of polycarboxylate superplasticizer. Materials, 12(24), 4190. doi: 10.3390/ma12244190
  11. Ramirez, A., Rojas, A., Gutierrez, L., Laskowski, J. S. (2018). Sodium hexametaphosphate and sodium silicate as dispersants to reduce the negative effect of kaolinite on the flotation of chalcopyrite in seawater. Minerals Engineering, 125, 10–14. doi: 10.1016/j.mineng.2018.05.008
  12. DSTU 4479:2005. Rechovyny vohnezakhysni vodorozchynni dlia derevyny. Zahalni tekhnichni vymohy ta metody vyprobuvannia. Chynnyi z 01.10.2006. Кyiv: Derzhspozhyvstandart Ukrainy, 17.
  13. DSTU 8829:2019. Pozhezhovybukhonebezpechnist rechovyn i materialiv. Nomenklatura pokaznykiv i metody yikhnoho vyznachennia. Klasyfikatsiia. Chynnyi z 01.01.2020. Vyd. ofits. Kyiv: UkrNDNTs, 75.
  14. Lysak, N., Skorodumova, O., Chernukha, A., Kochubei, V., Sotiriadis, K. (2025). Study of Gelation Processes in Flame Retardant Compositions of the SiO2 Sol System – A Phosphate-Containing Additive. Defects and Diffusion Forum, 438, 101–110. doi: 10.4028/p-I2sYIR
  15. Zribi, M., Baklouti, S. (2021). Investigation of phosphate based geopolymers formation mechanism. Journal of Non-Crystalline Solids, 562, 120777. doi: 10.1016/j.jnoncrysol.2021.120777
  16. Karan, R., Pal, P., Maiti, P., Das, K. (2021). Structure, properties and in-vitro response of SiO2-Na2O-CaO-P2O5 system, based glass-ceramics after partial replace-ment of Na2O by Li2O. Journal of Non-Crystalline Solids, 556, 120554. doi: 10.1016/j.jnoncrysol.2020.120554