Друк

 

Technological features of obtaining complex silica sols for fire protection of building finishing materials

 

Lysak Nataliia

National University of Civil Protection of Ukraine

https://orcid.org/0000-0001-5338-4704

 

Skorodumova Olga

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-8962-0155

 

Chernukha Anton

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-0365-3205

 

Goncharenko Yana

National University of Civil Protection e of Ukraine

https://orcid.org/0000-0002-1766-3244

 

Ivanenko Oleksandr

National University of Civil Protection of Ukraine

http://orcid.org/0009-0006-8566-0084

 

DOI: https://doi.org/10.52363/2524-0226-2025-42-14

 

Keywords: fire-retardant silica-containing coatings, silicophosphate coatings, modifying phosphorus-containing additives, building materials, heat resistance, fire resistance, extruded polystyrene foam

 

Аnnotation

 

The influence of the technology for obtaining fire-retardant compositions based on liquid glass for fire protection of building finishing materials was studied. The influence of the silicate module of liquid glass on the rheological properties of silicic acid sols modified with phosphate-containing compounds was studied. According to the results of spectrophotometric measurements, it was established that the ratio n(SiO₂)/n(Na₂O) in liquid glass within 2.5–3 does not significantly affect the survivability of the compositions. The influence of the ratio of the initial components on the duration of solidification of the sols was determined. It was established that the preliminary introduction of 0.1 wt. % Trilon B into tap water allows obtaining stable silicic acid sols over time, which is a prerequisite for the formation of a homogeneous fire-retardant coating. Fire tests were carried out on samples of wood and extruded polystyrene foam coated with compositions of the studied composition. It was found that the content of 2 % orthophosphoric acid and 0.1 % sodium hexametaphosphate provides mass loss of wood samples less than 7.5 %, which corresponds to the I group of fire-retardant efficiency of coatings, and the protected material belongs to the group of low-flammability. For extruded polystyrene foam, the best fire-retardant effect was demonstrated by compositions with a sodium hexametaphosphate content of 1 %: mass loss of samples varied within 1–3 %, burning drops were not formed, and the samples did not support combustion. It is assumed that the increased fire resistance of coatings with a higher content of phosphorus-containing additive is associated with the fusibility of sodium compounds and their ability to transfer the fire-retardant coating to a visco-plastic state, which contributes to the dissipation of deformation stresses and prevents the formation of cracks in the coating.

 

References

 

  1. McKenna, S., Jones, N., Peck, G., Dickens, K., Pawelec, W., Oradei, S., Harris, S., Stec, A., Hull, T. (2018). Fire behaviour of modern façade materials – Understanding the Grenfell Tower fire. Journal of Hazardous Materials, 368, 115–123. doi: 10.1016/j.jhazmat.2018.12.077
  2. Guillaume, E., Dréan, V., Girardin, B., Benameur, F., Fateh, T. (2019). Recon-struction of Grenfell Tower fire. Part 1: Lessons from observations and determination of work hypotheses. Fire and Materials, 44(1), 3–14. doi: 10.1002/fam.2766
  3. Kilinc, M. (2014). Silicon Based Flame Retardants. In Non‐Halogenated Flame Retardant Handbook, 169–199. doi: 10.1002/9781118939239.ch5
  4. Cui, Y., Xu, Z., Li, Y., Lang, X., Zong, C., Cao, L. (2022). Synergistic thermo-dynamic compatibility of polydimethylsiloxane block in thermoplastic polyurethane for flame retardant materials: Super flexible, highly flame retardant and low smoke release. Polymer, 253, 124976. doi: 10.1016/j.polymer.2022.124976
  5. Kang, Y., Zou, Y., Di, X., Yang, J., Sun, J., Li, H., Gu, X., Zhang, S. (2025). To improve the flame retardancy, mechanical properties, and water resistance of PC/ABS alloy by a polydimethylsiloxane. Polymer Degradation and Stability, 111347. doi: 10.1016/j.polymdegradstab.2025.111347
  6. Niemczyk, A., Dziubek, K., Sacher-Majewska, B., Czaja, K., Czech-Polak, J., Oliwa, R., Lenża, J., Szołyga, M. (2018). Thermal stability and flame retardancy of polypropylene composites containing Siloxane-Silsesquioxane resins. Polymers, 10(9), 1019. doi: 10.3390/polym10091019
  7. Wang, S., Yang, X., Li, Z., Xu, X., Liu, H., Wang, D., Min, H., Shang, S. (2020). Novel eco-friendly maleopimaric acid based polysiloxane flame retardant and application in rigid polyurethane foam. Composites Science and Technology, 198, 108272. doi: 10.1016/j.compscitech.2020.108272
  8. Cheng, S., Zhao, Z., Lu, P., He, S., Zhou, W., Deng, C., Wang, Y. (2024). Fire-safe thermoplastic polyurethane created by a novel silane-containing phosphate. Materials Letters, 367, 136597. doi: 10.1016/j.matlet.2024.136597
  9. Chen, F., Zhang, J., Li, N., Zhang, C., Ji, B., Hu, L., Zhao, T., Wang, Z., Zhang, S. (2018). Heat insulating, fire retardant and flexible inorganic nanocomposite paper. Materials & Design, 144, 281–289. doi: 10.1016/j.matdes.2018.02.039
  10. Yang, S., Liu, Z., Wang, Z., Wu, Y. (2023). Organic–inorganic hybrid of silica sol to promote flame retardant and mechanical properties of wood. European Journal of Wood and Wood Products, 81(5), 1313–1325. doi: 10.1007/s00107-023-01944-5
  11. Cheng, X., Tang, R., Guan, J., Zhou, S. (2020). An eco-friendly and effective flame retardant coating for cotton fabric based on phytic acid doped silica sol approach. Progress in Organic Coatings, 141, 105539. doi: 10.1016/j.porgcoat.2020.105539
  12. Lysak, N., Skorodumova, O., Chernukha, A. (2023). Development of a fire-proof coating containing silica for polystyrene. Problems of Emergency Situations, 2(38), 192–202. doi: 10.52363/2524-0226-2023-38-10
  13. Lysak, N., Skorodumova, O., Chernukha A., Goncharenko, Y., Melezhyk, R. (2024). Silicophosphate fireproof coatings for building materials. Problems of Emer-gency Situations, 1(39), 262–271. doi: 10.52363/2524-0226-2024-39-19
  14. Lysak, N., Skorodumova, O., Chernukha, A., Kochubei, V., and Sotiriadis, K. (2025). Study of Gelation Processes in Flame Retardant Compositions of the SiO2 Sol System – A Phosphate-Containing Additive. Defects and Diffusion Forum, 438, 101–110. doi: 10.4028/p-I2sYIR
  15. Mastalska-Popiawska, J., Izak, P. (2017). Effect of silicate module of water glass on rheological parameters of poly(sodium acrylate)/sodium silicate hydrogels. Journal of Physics Conference Series, 790, 012021. doi: 10.1088/1742-6596/790/1/012021
  16. Sivasakthi, M., Jeyalakshmi, R., Rajamane, N.P. (2021). Effect of change in the silica modulus of sodium silicate solution on the microstructure of fly ash geopolymers. Journal of Building Engineering, 44, 102939. doi: 10.1016/j.jobe.2021.102939
  17. Wang, Q., Bian, H., Li, M., Dai, M., Chen, Y., Jiang, H., Zhang, Q., Dong, F., Huang, J., Ding, Z. (2022). Effects of a Water-Glass module on compressive strength, size effect and Stress–Strain behavior of geopolymer recycled aggregate concrete. Crystals, 12(2), 218. doi: 10.3390/cryst12020218
  18. BASF. (2007). Trilon® B types (Technical Information TI/EVD 1085 e). Ludwigshafen, Germany: BASF Aktiengesellschaft.
  19. DSTU-N B В.2.7-304:2015 Nastanova z vigotovlennya ta zastosuvannya luzhnikh tsementіv, betonіv ta konstruktsіi na їkh osnovі. Chynnyi z 01.04.2016. Kyiv: Mіnіsterstvo regіonalnogo rozvitku, budіvnitstva ta zhitlovo-komunalnogo gospodarstva Ukraїni. 2016.
  20. DSTU 4479:2005. (2006). Rechovyny vohnezakhysni vodorozchynni dlia derevyny. Zahalni tekhnichni vymohy ta metody vyprobuvannia. Chynnyi z 01.10.2006. Кyiv: Derzhspozhyvstandart Ukrainy, 17.
  21. DSTU 8829:2019. (2020). Pozhezhovybukhonebezpechnist rechovyn i materialiv. Nomenklatura pokaznykiv i metody yikhnoho vyznachennia. Klasyfikatsiia. Chynnyi z 01.01.2020. Vyd. ofits. Kyiv: UkrNDNTs, 75.
  22. Zribi, M., Baklouti, S. (2021). Investigation of phosphate based geopolymers formation mechanism. Journal of Non-Crystalline Solids, 562, 120777. doi: 10.1016/j.jnoncrysol.2021.120777
  23. Karan, R., Pal, P., Maiti, P., Das, K. (2021). Structure, properties and in-vitro response of SiO2-Na2O-CaO-P2O5 system, based glass-ceramics after partial replace-ment of Na2O by Li2O. Journal of Non-Crystalline Solids, 556, 120554. doi: 10.1016/j.jnoncrysol.2020.120554