Print

 

 

Multifactor model of excavation of an explosive subject diver

 

Ihor Soloviov

Main Directorate of the State Emergency Service of Ukraine in Kherson region

http://orcid.org/0000-0002-0400-6704

 

Victor Strelets

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-9109-8714

 

Dmytro Lovin

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-1066-0286

 

DOI: https://doi.org/10.52363/2524-0226-2021-34-20

 

Keywords: underwater demining, diver-sapper, rise, explosive object, multifactor model

 

Аnnotation

The use of experimental research planning methods has shown that to obtain a multifactor model of lifting an explosive object by a sapper diver from a depth that will take into account both the impact, in case nonlinear, selected parameters and the effects of interaction between them, it is advisable to conduct a multifactorial experiment 3x3x2. Statistical indicators of the time of lifting an explosive object in accordance with such a plan can be obtained using the method of direct expert assessments. As a result, a multi- factor model of lifting an explosive object by divers in the form of a three-factor square polynomial was obtained, the coefficients of which establish a quantitative relationship between the level of training of personnel, external conditions in which he works and lifeguards. Field experiments confirmed the reliability of the developed mathematical model with a significance level of α=0,05. It is shown that when developing operational and technical recommendations, divers need to take into account both the type of diving suit and the effects of the interaction between the level of training of personnel and the conditions in which they work. At the same time, it is possible to ignore the effects of the interaction of the conditions of lifting an explosive object with the suit in which the sapper divers work, as well as the quadratic effect of using a dry or wet suit. It should be expected that in the case of lifting an explosive device, the level of preparedness will be more pronounced in divers-sappers with a primary level, as well as the fact that for them to reduce the effectiveness of underwater demining will be affected by poor external working conditions. During further research, increased attention should be paid to the preparation of diver sappers to work in difficult conditions and to the planning of operational activities of a specialized pyrotechnic unit, as well as the use of the latest technical means of underwater demining.

 

References

  1. Frey, Torsten, Beldowski, Jacek and Maser, Edmund. (2020). Explosive Ordnance in the Baltic Sea: New Tools for Decision Makers. The Journal of Conventional Weapons Destruction, 23, 3, 11. Retrieved from https://commons.lib.jmu.edu/cisr-journal/vol23/iss3/11
  2. Beck AJ, Gledhill M, Schlosser C, Stamer B, Böttcher C, Sternheim J, Greinert J and Achterberg EP. (2018). Spread, Behavior, and Ecosystem Consequences of Conventional Munitions Compounds in Coastal Marine Waters. Frontiers in Marine Science, 5, 141. doi: 10.3389/fmars.2018.00141
  3. Ong, Caroline, Tamara Chapman, Raymond Zilinskas, Benjamin Brodsky and Joshua Newman. (2013). Chemical Weapons Munitions Dumped at Sea: An Interactive Map. James Martin Center for Nonproliferation Studies. Retrieved from http://cns.miis.edu/stories/090806_cw_dumping.htm
  4. Long, Terrance P. (2013). An International Overview of Sea Dumped Chemical Weapons: The Way Forward. Conventional Weapons Convention Coalition. Retrieved from http://www.cwccoalition.org/wp-content/uploads/2010/12/longpaper.pdf
  5. Dario Matika, Slavko Barić. (2016). Maritime environmental security. Scientific Journal of Maritime Research, 30, 19–27. Retrieved from Downloads/357_16_1_Matika_Baric.pdf 6. Solovjov, I. I., Ctrilecz`, V. M. (2020). Problemni py`tannya vy`konannya robit z pidvodnogo rozminuvannya. Energozberezhennya ta promy`slova bezpeka: vy`kly`ky` ta perspekty`vy`. Tretya mizhnarodna naukovo-prakty`chna konferenciya. Ky`yiv: KPI, NNDI PBtaOP, 225–231.
  6. Möller, Gunnar. (2011). From a DC-3 to BOSB: The Road to a Breakthrough in Military Safety Measures Against the Risks of Historic, Explosive Ordnance. Marine Technology Society Journal, 45, 6, 26–34(9). doi: doi.org/10.4031/MTSJ.45.6.1
  7. IMAS 09.60:2014, IDT. Underwater Survey and Clearance of Explosive Ordnance (EO). Retrieved from https://reliefweb.int/sites/reliefweb.int/files/resources/www.mineactionstandards.org_filead min_MAS_documents_imas-international-standards_english_series09_IMAS_09.60_Underwater_Survey_and_Clearance_of_Explosive_Ordnance__EO_.pdf
  8. Standard Operating Procedures for Humanitarian Underwater Demining in South Eastern Europe. Retrieved from https://old.mineactionstandards.org/fileadmin/MAS/documents/referencespublications/Humanitarian-Underwater-Demining-in-South-Eastern-Europe.pdf
  9. Humanitarian Demining, Geneva International Centre for «A Guide to Survey and Clearance of Underwater Explosive Ordnance». (2016). Global CWD Repository. 1326. Retrieved from https://commons.lib.jmu.edu/cisr-globalcwd/1326
  10. Mareike, Kampmeier, Eefke, M. van der Lee, UweWichert, JensGreinert. (2020). Exploration of the munition dumpsite Kolberger Heide in Kiel Bay, Germany: Example for a standardised hydroacoustic and optic monitoring approach. Continental Shelf Research, 198, 104108. doi: 10.1016/j.csr.2020.104108
  11. Kocyuruba, V., Czыbuly`ya, S., Rыbalko, V. (2019). Obosnovany`e pry`meneny`ya metoda vozdushnoj razvedky` rajona y`ntensy`vnogo pry`meneny`ya my`nnogo oruzhy`ya. Zhurnal nauchnыx trudov. Socy`al`noe razvy`ty`e y` bezopasnost`, 9, 1, 60–68. doi: 10.33445 / sds.2019.9.1.5
  12. Sayle, Stephen, Windeyer, Tom, Charles, Michael, Conrod, Scott, Stephenson, Malcolm. (2009). Site Assessment and Risk Management Framework for Underwater Munitions. Marine Technology Society Journal, 43, 4, 41–51(11). doi: 10.4031/MTSJ.43.4.10
  13. The British Army – Commando Engineer Diver. UK Ministry of Defence. Retrieved 17 April 2017. Retrieved from https://www.army.mod.uk/who-we-are/corpsregiments-and-units/corps-of-royal-engineers/
  14. Huet, C., Mastroddi, F. (2016). Autonomy for underwater robots – a European perspective. Auton Robot 40, 1113–1118. doi: 10.1007/s10514-016-9605-x
  15. Nick, Cooper, Simon, Cooke, Kevin, Burgess (2017). Risky Business Dealing with Unexploded Ordnance (UXO) in the Marine Environment. Coasts, Marine Structures and Breakwaters. Published Online. doi: 10.1680/cmsb.63174.0157
  16. Mijajlovic, Veselin (2013). The Regional Center for Divers Training and Underwater Demining. The Journal of ERW and Mine Action, 17, 2, 13. Retrieved from https://commons.lib.jmu.edu/cisr-journal/vol17/iss2/13
  17. Camilli, Richard, Bingham, Brian S., Jakuba, Michael V., Duryea, Anthony N., LeBouvier, Rand, Dock, Matthew (2009). AUV Sensors for Real-Time Detection, Localization, Characterization, and Monitoring of Underwater Munitions. Marine Technology Society Journal, 43, 4, 76–84(9). doi: 10.4031/MTSJ.43.4.6
  18. Herbert, John. Risk Mitigation of Chemical Munitions in a Deep-Water Geohazard Assessment (2010). Marine Technology Society Journal, 44, 1, 86–96(11). doi: 10.4031/MTSJ.44.1.4
  19. Rancich, Tom (2011). Search and Recovery of Munitions by Divers. Marine Technology Society Journal, 45, 6, 75–79(5). doi: 10.4031/MTSJ.45.6.9
  20. Gry`czaenko, M. (2017). Razrabotka modely` y`nformacy`onnoj platformы dlya obezvrezhy`vany`ya potency`al`no opasnыx podvodnыx obъektov. Texnology`chesky`j audy`t y` proy`zvodstvennыe rezervы, 2 (2(40), 57–62. doi: 10.15587/2312-8372.2018.129208
  21. Olga Lucia Lopera Tellez, Alexander Borghgraef and Eric Mersch (August 30th 2017). The Special Case of Sea Mines, Mine Action – The Research Experience of the Royal Military Academy of Belgium, Charles Beumier, Damien Closson, Vinciane Lacroix, Nada Milisavljevic and Yann Yvinec, IntechOpen. doi: 10.5772/66994
  22. International Symposium Mine Action (2019). Slano, Croatia. Retrieved from http://www.ctro.hr/wp-content/uploads/2019/04/Knjiga-za-web-4-mb.pdf
  23. Olasunkanmi Habeeb Okunola (2019). Spatial analysis of disaster statistics in selected cities of Nigeria, International Journal of Emergency Management, 15, 4, 299–315. doi: 10.1504/IJEM.2019.104195
  24. Willem, Treurniet, Kees, Boersma, Peter, Groenewegen (2019). Configuring emergency response networks. International Journal of Emergency Management, 15, 4, 316–333. doi: 10.1504/IJEM.2019.104200
  25. Gibson, T. D., Scott, N. (2019). Views from the Frontline and Frontline methodology: critical reflection on theory and practice. Disaster Prevention and Management, 28, 1, 6–19. doi: 10.1108/DPM-07-2018-0214
  26. Garnier, E. (2019). Lessons learned from the past for a better resilience to contemporary risks. Disaster Prevention and Management, 28, 6, 786–803. doi: 10.1108/DPM-09-2019-0303
  27. Strelecz, V. M. (2001). Y`my`tacy`onnыj analy`z sy`stemы «chelovekmashy`na» kak metod эrgonomy`cheskoj ocenky` funkcy`ony`rovany`ya avary`jnыx sluzhb. Nauchno-texny`chesky`j zhurnal. Rady`oэlektrony`ka y` y`nformaty`ka, 3(16), 125–128.
  28. Afanas`yeva, O., Solovjov, I., Strilecz` V. (2021). Matematy`chna model` pidvodnogo rozminuvannya vy`buxonebezpechnogo predmetu. Informaciya ta bezpeka suspil`stva (Information and Public Safety), 2, 5. doi: 10.53029/2786-4529-2021-2-5
  29. Solovjov, I. I. Stecyuk, Ye. I., Strilecz` V. M. (2020). Zakonomirnosti rozxodu povitrya pid chas pidvodnogo rozminuvannya vodny`x akvatorij. Problemy` nadzvy`chajny`x sy`tuacij, 2(32), 132–144. doi: 10.5281/zenodo.4400181
  30. Voznesensky`j, V. A. Staty`sty`chesky`e metodы plany`rovany`ya эkspery`menta v texny`ko-эkonomy`chesky`x y`ssledovany`yax. M.: Fy`nansы y` staty`sty`ka, 1981, 263.
  31. Strelets V. M. (1998). The use of an expert method for direct assessment of the results of activities / V.M. Sagittarius // Information systems: collection of scientific papers. NANU, PANI, HVU, 2(10), 165–168.
  32. Beshelev, S. D., Gurvich, F. G. (1974). Mathematical and statistical methods of expert assessments. M.: Statistics, 264.
  33. Mitropolskii, A. K. (1971). Tekhnika statisticheskikh vychislenii. – Glavnaya redaktsiya fiziko-matematicheskoi literatury izdatelstva «Nauka», 576.
  34. Strelets, V. M. (2015). Raskrytie zakonomernostei vypolneniya osnovnykh operatsii boevogo razvertyvaniya pozharnykh avtomobilei // Sy`stemy` ozbroyennya i vijs`kova texnika. Kharkіv, 2(42), 173–175.
  35. Strelets, V. M. (2014). Razvitie metoda imitatsionnoi ergonomicheskoi otsenki funktsionirovaniya sistemy «spasatel – sredstva zashchity lichnogo sostava i likvidatsii avarii – chrezvychainaya situatsiya» // Vestnik Kokshetauskogo tekhnicheskogo instituta. Kokshetau, 4(16), 19–26.