Мathematical model of heating of propane-butane gas cylinders in residential buildings
Klyuchka Yurii
National University of Urban Economy named by O.M. Beketov
http://orcid.org/0000-0003-1066-4217
Doroshenko Daria
National University of Civil Protection of Ukraine
http://orcid.org/0000-0003-4222-9359
DOI: https://doi.org/10.52363/2524-0226-2025-41-13
Keywords: propane-butane, heating, unsteady heat conduction, explosion, cylinder, emergency
Аnnotation
This study investigates propane-butane gas cylinders and develops a mathematical model to predict the behavior of such systems under thermal influence. In the first stage, it was established that the share of heat required for gas heating ranges from 0.73 to 0.8, and the cylinder material can absorb from 20% to 100% of the heat, which significantly affects the heating dynamics. For cylinders with volumes of 12.7 and 26.2 liters, only at fill ratios of 0.24 and 0.36, respectively, does the amount of heat required for gas heating exceed the amount for cylinder heating. These results indicate a significant contribution of the cylinder material itself to heat absorption during cylinder heating. The second stage addresses the urgent safety problem of residential and industrial facilities caused by the widespread use of propane-butane, which is a highly flammable and explosive substance. Attention is paid to the risks associated with heating propane-butane cylinders, which can lead to increased pressure and depressurization, causing an explosion according to the BLEVE (Boiling Liquid Expanding Vapour Explosion) scenario. The necessity of developing a mathematical model is substantiated, which would allow predicting the change in the temperature regime of cylinder components (walls, liquid, and gas) and the pressure of propane-butane within it in real-time under the influence of external factors, taking into account complex heat exchange processes. The developed model is based on the unsteady heat conduction equation for the cylinder body with third-kind boundary conditions on the outer and inner walls of the cylinder. The model construction considers the properties of the cylinder material (thermal conductivity, heat capacity, density, thermal expansion coefficient), its geometry (surface area, wall thickness, shape), etc. The obtained model will subsequently allow evaluating the temperature distribution in the cylinder wall, predicting critical values leading to failure and possible explosion.
References
- Doroshenko, O., Klyuchka, Y. P., Mykhaylyuk, O. P. (2020). Analiz naslidkiv vybukhiv ta umov utvorennya hazopovitryanykh sumishey u zhytlovykh budivlyakh. Problemy pozhezhnoyi bezpeky, 48, 37–44. Available at: http://nbuv.gov.ua/UJRN/Ppb_2020_48_8
- DSTU IEC/ISO 31010:2013. (2013). Keruvannya ryzykom. Metody zahalʹnoho otsinyuvannya ryzyku (IEC/ISO 31010:2009, IDT). Available at: https://khoda.gov.ua/image/catalog/files/dstu%2031010.pdf
- Analitychna dovidka pro pozhezhi ta yikh naslidky v Ukrayini za 12 misyatsiv 2024 roku. Kyiv, 39. Available at: https://dsns.gov.ua/upload/2/3/0/1/6/1/2/analiticna-dovidka-pro-pozezi-za-12-misiaciv-2024-na-sait.pdf
- Analitychna dovidka pro pozhezhi ta yikh naslidky v Ukrayini za 12 misyatsiv 2023 roku. Available at: https://dsns.gov.ua/upload/2/0/2/2/3/2/1/2023-rik.pdf
- Klyuchka, P., Doroshenko, D. O. (2025). Eksperymentalʹna otsinka tysku propan-butanu v baloni pry yoho nahrivanni. Stalyy rozvytok mist: postvoyennyy period: Materialy Vseukrayinsʹkoyi naukovo-tekhnichnoyi konferentsiyi. Kharkiv: KHNUMH im. O. M. Beketova, 237–239. Available at: https://science.kname.edu.ua/images/dok/konferentsii/stalyirozvytok2019/2025/C_3_Budivelna_ta_civilna_inzeneria_25.pdf
- Huseynov, R. N., Panchuk, Y. V. (2021). Osnovni rozrakhunkovi metody doslidzhennya obstavyn i mekhanizmu tekhnohennykh vybukhiv. Teoriya ta praktyka sudovoyi ekspertyzy i kryminalistyky, 23, 258– doi: 10.32353/khrife.1.2021.20
- Chengjun, Y., Li, C., Li, Z, Feng, B., Xu., R. (2025). Research on the hazards of gas leakage and explosion in a full-scale residential building. Defence Technology, 43, 168–181. doi: 10.2139/ssrn.4770361
- Turgut, , Gurel, M., Pekgokgoz, R. (2013). LPG explosion damage of a reinforced concrete building: A casestudy in Sanliurfa, Turkey. Engineering Failure Analysis, 32, 220–235. doi:10.1016/j.engfailanal.2013.04.004
- Krzysiak, Z., Samociuk, W., Bartnik, G., Plizga, K., Dziki, D., Kaliniewicz, Z., Nieoczym, A., Wyciszkiewicz, A., Otto, T. (2017). Analysis of tank safety with propane-butane on LPG distribution station. Pol. J. Chem. Technol, 19, 99–102. doi: 1515/pjct-2017-0074
- Baobin, , Wenjie, Z., Chuangnan, R., Shaopeng, S., Chenhui, G. (2023). Study of the effect of gas baffles on the prevention and control of gas leakage and explosion hazards in autility tunnel. Applied Sciences, 13, 7, 1–19. doi.org/10.3390/app13074264
- Ismail, , Sharif, K., Udin, Z., Hassan, M., Nawi, M., Hamid, Z., Ibrahim, J., Othman, A. (2018). A risk assessment in natural gas supply. International Journal of Supply Chain Management, 7, 4, 180–184. doi.org/10.59160/ijscm.v7i4.2371
- Tindal, J. (2018). Forensic engineering analysis of an explosion allegedly caused by an overfilled propane cylinder. Journal of the NAFE, 35, 2, 81–99. doi:10.51501/jotnafe.v35i2.62
- Nick, C., Mark, S., Martin, S., Peter, F., et al. (2023). Fire investigation: a primer for courts, 1–68. Available at: https://royalsociety.org/-/media/about-us/programmes/science-and-law/royal-society-fire-investigation.pdf
- Chmielewski, R., Bąk, A. (2021). Analysis of the safety of residential buildings under gas explosion loads. Journal of Building Engineering, 43.doi:10.1016/j.jobe.2021.102815
- Tomlin, G. (2015). Gas explosions in dwellings, the effects of interconnected rooms and obstacles, and the interpretation of thermal damage, 1–Available at: https://etheses.whiterose.ac.uk/id/eprint/10599/
- Pasport kompozitnogo gazovogo balonu. Available at: https://gazballon.com.ua/wp-content/uploads/2016/11/pasport.pdf
- Drahanov, B.K., Bessarab, O., Dolinsʹkyy, A.A., Lazorenko, V.O., Mishchenko, A.B. (2005). Teplotekhnika. Kyyiv, 400. Availableat:https://dspace.nuft.edu.ua/server/api/core/bitstreams/9bfb192a-a15b-4685-aa97-975ec8978dc3/content
- Ryabova, I. B., Saychuk, I. V., Sharshanov, A. Y. (2002). Termodynamika i teploperedacha u pozhezhniy spravi. Kharkiv, 352. Available at: http://www.univer.nuczu.edu.ua/tmp_metod/467/Titul.pdf