Print

Experimental verification of the electromagnetic method of detecting explosive objects.

 

Karpov Artem

National University of Civil Protection of Ukraine

http://orcid.org/0009-0007-9895-1574

 

Kustov Maksim

National University of Civil Protection of Ukraine

https://orcid.org/0000-0002-6960-6399

 

Korniienko Ruslan

National University of Civil Protection of Ukraine

http://orcid.org/0000-0003-4854-283X

 

Ivanenko Oleksandr

National University of Civil Protection of Ukraine

http://orcid.org/0009-0006-8566-0084

 

Sharipova Dariya

National University of Civil Protection of Ukraine

http://orcid.org/0000-0001-9926-6041

 

DOI: https://doi.org/10.52363/2524-0226-2025-41-3

 

Keywords: explosive ordnance, humanitarian demining, electromagnetic radiation, radar map

 

 

Аnnotation

 

          A detailed functional diagram of an electromagnetic explosive detector based on a high-performance digital processor of the Blackfin type has been developed. The hardware part of this detector includes a radiating antenna that generates electromagnetic waves and a receiving antenna that registers the reflected signal. It also includes a signal amplification unit, an automatic gain control system that ensures signal stability under changing environmental conditions, digital-to-analog and analog-to-digital converters for processing signals in digital form, and a timing unit that synchronizes all hardware components. This architecture allows for efficient data collection and processing at high transmission speeds and ensures prompt clock updates for the converters. On the basis of the developed prototype detector, a comprehensive experimental test was carried out to confirm the adequacy of the previously created theoretical models described in previous studies. The experiments showed that the electromagnetic properties of the environment, in particular the level of soil watering, as well as the geometric parameters of the explosive object and its design features, significantly affect the detection results. Analysis of radar images obtained during testing of the detector on samples of PMN-2, PFM-1 and TM-62 mines confirmed the effectiveness of the developed approach. In particular, the detector demonstrates the ability to detect a TM-62 mine at depths of up to 50 cm, and for anti-personnel mines (PMN-2 and PFM-1) the effective detection depth is up to 20 cm. These indicators fully meet the tactical requirements for detecting anti-personnel and anti-tank mines. To further improve the recognition accuracy and signal resolution, it is proposed to use modern mathematical models and methods of data flow processing.

 

References

  1. Trebin, M. P. Ivanov, S. V., Melnyk, O. A., Razumova, H. V. (2025). War as a challenge to the existence of civilization. Destructive megatrends of our time: from pandemic to war. Viina yak vyklyk isnuvanniu tsyvilizatsii. Destruktyvni mehatendentsii suchasnosti: vid pandemii do viiny : monographe; Kharkiv: Pravo, 105–130. Available at: http://repository.hneu.edu.ua/handle /123456789/35712
  2. Songtao, Li. (2019). Study on Ground-Penetrating Radar (GPR) Application in Pavement Deep Distress Detection. Chengchao Guo Journal of Transportation Technologies, 9(2), 18. doi: 10.4236/jtts.2019.92015
  3. Frank, J. W. P., Anthony, J. P., David, W. A. (2015). GPR combined with a positioning system to detect anti-personnel landmines. 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), 1–4. doi: 10.1109/IWAGPR.2015. 7292660
  4. Elsheakh, D. M. (2017). Linear/circular polarizations slot antennas for millimmiter wave applications. Microwave and Optical Technology Letters, 59(4), 976–983. doi: 10.1002/mop.30435
  5. Indelicato, A. (2017). The Impact of Frequency in Surveying Engineering Slopes Using Ground Penetrating Radar. International Journal of Geosciences, 8(3), 296–304. doi:10.4236/ijg.2017.83014
  6. Saranya, S., Sudha, G., Rithika, B., Alagappan, A., Sanjeev, D. (2024). Ground Penetrating Radar For Identifying Mines In A Minefield. In 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) IEEE, 1–5. doi: 10.1109/ICPECTS62210.2024.10780419
  7. Abufares, L., Chen, Y., Al-Qadi, I. L. (2025). Asphalt concrete density monitoring during compaction using roller-mounted GPR. Automation in Construction, 174, 106158. doi: 10.1016/j.autcon.2025.106158
  8. Liu, Y., Zhang, Z., Yuan, Y., Zhu, Y., Wang, K. (2025). Quantitative Evaluation of Internal Pavement Distresses Based on 3D Ground Penetrating Radar. The Baltic Journal of Road and Bridge Engineering, 20(1), 45–69. doi: 10.7250/bjrbe.2025-20.653
  9. Cui, L., Li, L., Zhang, W., Sun, F., Fan, D., Zhang, H. (2025). Advances of deep learning application in qualitative and quantitative detection of road subsurface distress using ground penetrating radar: A review. Measurement, 247, 116760. doi: 10.1016/j.measurement.2025.117007
  10. Wang, W., Du, W., Cheng, S., Zhuo, J. (2025). Numerical Simulation Study on the Impact of Blind Zones in Ground Penetrating Radar. Sensors, 25(4), 1252. doi: 10.3390/s25041252
  11. Lambot, S., Wu, K., Sluÿters, A., Vanderdonckt, J. (2024). The Full‐Wave Radar Equation for Wave Propagation in Multilayered Media and Its Applications. Ground Penetrating Radar: From Theoretical Endeavors to Computational Electromagnetics, Signal Processing, Antenna Design and Field Applications, 123–160. doi: 10.1002/9781394284405.ch5
  12. Sainson, S., Sainson, L., Sainson, S. (2017). Electromagnetic seabed logging. Springer International Publishing, 19, 536. doi: 10.1007/978-3-319-45355-2
  13. Kustov, M., Karpov, A. (2023). Sensitivity of explosive materials to the action of electromagnetic fields. Проблеми надзвичайних ситуацій. Харків: НУЦЗ України, 1(37), 4–17. doi: 10.52363/2524-0226-2023-37-1
  14. Kustov, M. V., Kulakov, O. V., Karpov, A. A., Basmanov, O. YE., Mykhaylovsʹka, YU. V. (2024). Elektrodynamichna modelʹ vzayemodiyi elektromahnitnoyi khvyli z poverkhneyu vybukhonebezpechnoyi rechovyny. Problemy nadzvychaynykh sytuatsiy: Naukovyy zhurnal, Kharkiv: NUTSZ Ukrayiny, 1 (39). 81–95. doi: 10.52363/2524-0226-2024-39-6
  15. Karpov, A. A., Kustov, M. V., Kulakov, O. V., Basmanov, O. YE., Mykhaylovsʹka, YU. V. (2024). Vzayemodiya elektromahnitnoyi khvyli z poverkhneyu realʹnoyi vybu-khonebezpechnoyi rechovyny. Problemy nadzvychaynykh sytuatsiy. Cherkasy: NUTSZ Ukrayiny, 2(40), 57–71. doi: 10.52363/2524-0226-2024-40-5