Improvement of risk-based management of occupational safety and hygiene

 

Bohdan Tsymbal

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-2317-3428

 

Olena Sharovatova

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-2736-2189

 

Artem Petryshchev

National University "Zaporizhzhya Polytechnic"

http://orcid.org/0000-0003-2631-1723

 

Alexandr Malko

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0003-4868-7887

 

Sergey Artemev

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-9086-2856

 

Oleg Bogatov

Kharkiv National Automobile and Highway University

https://orcid.org/0000-0001-7342-7556

 

DOI: https://doi.org/10.52363/2524-0226-2023-37-5

Keywords: risk-oriented management, occupational safety and hygiene, occupational risk assessment methodology, occupational risk management, methodology testing

 

Аnnotation

 

The importance of improving a risk-oriented approach is considered, as such an approach allows to ensure a high level of safety and hygiene at the workplace, reduce the risk of negative consequences for employees and prevent material losses for the enterprise. The features of the main stages of risk-oriented management of occupational safety and health, such as identification, assessment and management of occupational risks, are analyzed. It was established that the most problematic stage is the assessment of professional risks. The analysis of methods for determining the level of risk and assessing the effectiveness of risk management measures showed that these methods are general and are not adapted to the specifics of various sectors of the economy. Simplified methods take into account only two components: the probability of exposure of the hazard to the worker and the damage or consequences. Three-component methods also take into account the frequency (tendency) characteristic of danger. At the same time, three-component methods do not have a matrix for assessing occupational risk. The vast majority of such methods do not provide an assessment of the residual risk, which shows the effectiveness of measures to reduce the level of occupational risk and the need for the implementation of corrective measures. At the same time, the hierarchy of control measures and the time limit for the implementation of preventive and protective measures are not taken into account. To eliminate these shortcomings, a three-component 3-D method of occupational risk assessment has been developed, which contains a volume matrix and allows to assess the residual risk. The obtained results of the implementation of the proposed methodology can be used in practice to improve safety and occupational hygiene at machine-building enterprises. The results of the study make it possible to reduce the number of accidents at the workplace and ensure an increase in the efficiency of occupational safety and health management.

 

References

  1. Iavorska, O. O., Arkhirei, M. M., Sharovatova, O. P., Borovytskyi, O. M. (2022). Erhonomika keruvannia profesiinymy ryzykamy. Komunalne hospodarstvo mist: Naukovo-tekhnichnyi zbirnyk, 6, 173, 170–177. doi: 10.33042/2522-1809-2022-6-173-170-177
  2. Ramos, D., Afonso, P., Rodrigues, M. (2020). Integrated management systems as a key facilitator of occupational health and safety risk management: A case study in a medium sized waste management firm. Journal of Cleaner Production, 262. doi: 10.1016/j.jclepro.2020.121346
  3. Madsen, C. U., Kirkegaard, M. L., Dyreborg, J., Hasle, P. (2020). Making occupational health and safety management systems «work»: A realist review of the OHSAS 18001 standard. Safety Science, 129. doi: 10.1016/j.ssci.2020.104843
  4. Mashwama, N., Aigbavboa, C., Thwala, W. (2019). Occupational Health and Safety Challenges Among Small and Medium Sized Enterprise Contractors in South Africa. In: Goossens, R. (eds) Advances in Social and Occupational Ergonomics. AHFE 2018. Advances in Intelligent Systems and Computing, 792. doi: 10.1007/978-3-319-94000-7
  5. Žužek, T., Rihar, L., Berlec, T., Kušar, J. (2020). Standard Project Risk. Analysis Approach. Business Systems Research, 11, 2, 149–158. doi: 10.2478/bsrj-2020-0021
  6. Chauhan, A. S., Nepal, B., Soni, G., Rathore, A. P. (2018). Examining the state of risk management research in new product development process. Engineering Management Journal, 30, 2, 85–97. doi: 10.1080/10429247.2018.1446120
  7. de Araújo Lima, P. F., Crema, M., Verbano, C. (2019). Risk management in SMEs: a systematic literature review and future directions. European Management Journal, 38, 78–94. doi: 10.1016/j.emj.2019.06.005
  8. Ferdous, R., Khan, F., Sadiq, R., Amyotte, P., Veitch, B. (2011). Fault and event tree analyses for process systems risk analysis: uncertainty handling formulations. Risk Analysis, 31, 1, 86–10. doi: 10.1111/j.1539-6924.2010.01475.x
  9. Funmilayo, J. A., P. de Beer, Haafkens, J. A. (2021). Occupational risk perception and the use of personal protective equipment (PPE): A study among informal automobile artisans in Osun state, Nigeria. SAGE Open, 1–10. doi: 10.1177/2158244021994585
  10. Syed, U., Faine, C., Sheharyar, K., Erum, C. at al. (2020). Strategies for rational use of personal protective equipment (PPE) among healthcare providers during the COVID-19 crisis. Cureus, 12(5). doi: 10.7759/cureus.8248
  11. Tinoco, H., Lima, G., Sant Anna, A., Gomes, C. at al. (2019). Risk perception in the use of personal protective equipment against noise-induced hearing loss. Gestão & Produção, 26, 1. doi: 10.1590/0104-530X1611-19
  12. Schau, H., Mehlem, M. (2011). Risk analysis and guidelines for selecting PPE against the thermal hazards of electric fault arcs. ICOLIM 2011, 10th International conference on live maintenance; May 31th-June 2nd, Zagreb, Croatia. Available online: urn:nbn:de:gbv:ilm1-2012200088
  13. Garrigoua, A., Laurentb, C., Berthetc, A., Colosiod, C., Jase, N., Daubas-Letourneuxf, V., Jackson Filhog, J.-M., Jouzelh, J.-N., Samueli, O., Baldia, I., Lebaillyj, P., Galeya, L., Goutillea, F., Judona, N. (2020). Critical review of the role of PPE in the prevention of risks related toagricultural pesticide use. Safety Science, 123. doi: 10.1016/j.ssci.2019.104527
  14. Long, Y., Hu, T., Liu, L., Chen, R., Guo, Q., Yang, L., Cheng, Y., Huang, J., Du, L. (2020). Effectiveness of № 95 respirators versus surgical masks against influenza: A systematic review and meta‐analysis. Journal of Evidence‐Based Medicine, 13, 2, 93–101. doi: 10.1111/jebm.12381
  15. Loeb, M., Dafoe, N., Mahony, J., John, M., Sarabia, A., Glavin, V., Webby, R., Smieja, M., Earn, D. J. D., Chong, S., Webb, A., Walter, S. D. (2009). Surgical mask vs № 95 respirator for preventing influenza among health care workers: a randomized trial. JAMA, 302, 17, 1865–1871. doi: 10.1001/jama.2009.1466
  16. MacIntyre, C. R., Wang, Q., Seale, H., Yang, P., Shi, W., Gao, Z., Rahman, B., Zhang, Y., Wang, X., Newall, A. T., Heywood, A., Dwyer, D. E. (2013). A randomized clinical trial of three options for № 95 respirators and medical masks in health workers. American journal of respiratory and critical care medicine, 187, 9, 960–966. doi: 10.1164/rccm.201207-1164OC
  17. Levine, E. S. (2012). Improving risk matrices: the advantages of logarithmically scaled axes. Journal of Risk Research, 15, 2, 209–222. doi: 10.1080/13669877.2011.634514
  18. Li, J., Bao, C., Wu, D. (2018). How to design rating schemes of risk matrices: a sequential updating approach. Risk Analysis, 38, 1, 99–117. doi: 10.1111/risa.12810
  19. Ni, H., Chen, A., Chen, N. (2010). Some extensions on risk matrix approach. Safety Science, 48, 10, 1269–1278. doi: 10.1016/j.ssci.2010.04.005
  20. Merritt, G. M., Smith, P. G. (2004). Techniques for managing project risk in Cleland D. (Ed.). Field Guide to Project Management, 202–218.
  21. OKeeffe, V. J., Tuckey, M. R., Naweed, A. (2015). Whose safety? flexible risk assessment boundaries balance nurse safety with patient care. Safety Science, 76, 111–120. doi: 10.1016/j.ssci.2015.02.024
  22. Aven, T. (2016). Risk assessment and risk management: review of recent advances on their foundation. European Journal of Operational Research, 253, 1, 1–13. doi: 10.1016/j.ejor.2015.12.023
  23. Dyrektyva Rady № 89/391/EIeS vid 12 chervnia 1989 roku pro zaprovadzhennia zakhodiv, poklykanykh zaokhochuvaty do pokrashchennia bezpeky ta okhorony zdorovia pratsivnykiv na roboti. Available at: https://zakon.rada.gov.ua/laws/show/994_b23#Text
  24. ISO 45001 «Systemy upravlinnia okhoronoiu zdorovia ta bezpekoiu pratsi. Vymohy ta nastanovy shchodo zastosuvannia». Available at: https://zakon.isu.net.ua/
    sites/default/files/normdocs/dstu_iso_45001_2019.pdf
  25. Heikkilä, A-M., Murtonen, M., Nissilä, M., Rouhiainen, V. (2009). Quality of risk assessment and its implementation. In V. Rouhiainen (Ed.). Scientific activities in Safety & Security, 66–67. Available at: http://www.vtt.fi/inf/julkaisut/muut/2009/pdf