Мathematical model of the magnetic-contact thermal fire detector

 

Viacheslav Durieiev

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-7981-6779

 

Valerii Khrystych

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-5900-7042

 

Serhij Bondarenko

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-4687-1763

 

Murat Maliarov

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0002-4052-7128

 

Ruslan Kornienko

National University of Civil Defenсe of Ukraine

http://orcid.org/0000-0003-4854-283X

 

DOI: https://doi.org/10.52363/2524-0226-2023-37-3

 

Keywords: fire detector, mathematical model, magnetic contacts, inertia, activation time, activation temperature

 

Аnnotation

 

A mathematical model of a fireman’s thermal magnetic contact detector was developed, taking into account the type and structure of the material of the sensitive element. Dependencies for the calculation of the dynamic parameters of the fire detector were determined and parametric studies of the tripping parameters were carried out. The analysis of the literature on the modeling of fire detectors proved the need to create a mathematical model of a thermal magnetic contact detector in order to obtain its dynamic parameters and improve technical data. The model represents a system of differential equations describing the dependence of the magnetization of contacts of various structures in the sensitive element of the magnetic contact heat detector of the firefighter on the temperature during non-stationary convective heating. The solution of mathematical models is the equation of detector dynamics in relative variables, taking into account the contact structure of the sensitive element: single-domain ferromagnet, superparamagnetic particles in weak and strong magnetic fields, superparamagnetic particles with comprehensive consideration of magnetization from the external magnetic field and temperature. The obtained dynamics equations represent a standard inertial dynamic link and are convenient for researching the operation and determining the dynamic parameters of magnetic contact heat detectors for firefighters. The obtained equations allow conducting research and determining the dynamic parameters of the detectors, taking into account the structure of the material of the magnetic contact sensitive element and the rate of temperature change. Comparison of the obtained results with experimental data shows differences of no more than 5 %. The developed mathematical model and the obtained dynamic equations make it possible to make recommendations regarding the selection of technical data of magnetic contact detectors and ways to improve their dynamic parameters.

 

References

 

  1. Abramov, Y., Basmanov, O., Salamov, J., Mikhayluk, A. (2018). Model of thermal effect of fire within a dike on the oil tank. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 95–100. doi: 10.29202/nvngu/2018-2/12
  2. O’Handley, (2000). Modern Magnetic Materials: Principles and Applications. John Wiley & Sons, 786. doi: 10.1109/MEI.2005.1490004
  3. Carter, C. B. (2007). Ceramic Materials: Science and Engineering. Springer, doi: 10.1007/978-0-387-46271-4
  4. Mahmoudi, M., Kavanlouei, M. (2015). Temperature and frequency dependence of electromagnetic properties of sintering Li–Zn ferrites with nano SiO2 Journal of Magnetism and Magnetic Materials, 384, 276–283 doi: 10.1016/j.jmmm.2015.02.053
  5. Tsepelev,, Starodubtsev, Y., Zelenin, V., Belozerov, V., Konashkov, V. (2015). Temperature affecting the magnetic properties of the Co79−xFe3Cr3Si15Bx amorphous alloy. Journal of Alloys and Compounds, 643, 280–282. doi: 10.1016/j.jallcom.2014.12.236
  6. Jackiewicz, D., Szewczyk, R., Salach, J. (2013). Modelling the magnetic characteristics and temperature influence on constructional steels. Solid State Phenomena, . 199, 466–471. doi: 4028/www.scientific.net/ssp.199.466
  7. Lu,, Zhu, Y., Hui, J. G. (2007). Measurement and modeling of thermal effects on magnetic hysteresis of soft ferrites. IEEE Transactions on Magnetics, 43(11), 3953–3960. doi: 10.1109/tmag.2007.904942
  8. Kachniarz, М., Salach, J, Szewczyk,, Bieńkowski, A., Korobiichuk, I. (2015). Investigation of temperature effect on magnetic characteristics of manganese-zinc ferrites. Eastern-European Journal of Enterprise Technologies, 6/5(78), 17–21. doi: 10.15587/1729-4061.2015.55410
  9. Bushkova, S. (2017). Nyzkotemperaturnie mahnytnie svoistva ferrytov. Low Temperature Physics, 43(12), 1724–1732. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/176281/04Bushkova.pdf?sequence=1
  10. Durieiev,O. (2019) Vyznachennia dynamichnykh parametriv spovishchuvachiv za danymy eksperymentu. Problemy pozhezhnoi bezpeky, 46, 54–56. Available at: https://nuczu.edu.ua/images/topmenu/science/zbirky-naukovykh-prats-ppb/ppb46/
    Dureev.pdf
  11. Zabara, S. Modelyuvannya sistem u seredovishchі MATLAB. (2015). Unіversitet Ukraїna, 137. Available at: https://www.yakaboo.ua/modeljuvannja-sistem-u-seredovischi-matlab.html