Spectral properties of the dynamics of dangerous environmental factors during indoor fires

 

Boris Pospelov

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-0957-3839

 

Evgeniy Rybka

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-5396-5151

 

Mikhail Samoilov

National University of Civil Defence of Ukraine

http://orcid.org/0000-0002-8924-7944

 

Ruslan Meleshchenko

National University of Civil Defence of Ukraine

http://orcid.org/0000-0001-5411-2030

 

Yuliia Bezuhla

National University of Civil Defence of Ukraine

http://orcid.org/0000-0003-4022-2807

 

Oleksandr Yashchenko

National University of Civil Defence of Ukraine

http://orcid.org/0000-0001-7129-389X

 

DOI: https://doi.org/10.52363/2524-0226-2022-35-3

 

Keywords: ignition of materials, gaseous indoor environment, amplitude instantaneous spectrum, phase instantaneous spectrum

 

Аnnotation

The spectral density and amplitude and phase spectra of the dynamics of the main dangerous factors of the gas environment during the ignition of test materials in a laboratory chamber were investigated. The object of the study is the spectral properties of the dynamics of dangerous factors of the gas environment during the ignition of materials. The main subject is the spectral density and the direct Fourier transform of discrete measurements of hazardous parameters of the gas environment at fixed intervals before and after the ignition of the material. The direct discrete Fourier transform allows determining the instantaneous amplitude and phase spectra for selected fixed time intervals. This makes it possible to study the peculiarities of instantaneous amplitudes and phases of harmonic components in the spectrum of non-stationary dynamics of dangerous parameters of the gas environment. It was established that the nature of the spectral density and amplitude spectrum is uninformative from the point of view of fire detection. It was established that the main contribution to the density and amplitude spectrum of the dynamics of the investigated hazardous parameters of the gas environment in the chamber is made by frequency components in the range of 0–0,2 Hz. At the same time, the contribution to the spectral density and amplitude spectrum of frequency components above 0,2 Hz decreases significantly with increasing frequency. It was found that the use of the direct Fourier transformation of the measured data and the use of the phase spectrum for the high-frequency components of the dynamics of the hazardous parameters of the gas environment exceeding 0,2 Hz are more informative and sensitive from the point of view of detecting fires. It was established that the nature of the phase spread for the specified frequency components in the phase spectrum depends on the type of ignition material. By the nature of the phase spread of the frequency components, it is possible not only to detect ignition, but also to recognize the type of ignition material.

 

References

  1. Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. EEJET, 6/10(90), 57–64. doi: 10.15587/1729-4061.2017.118213
  2. Tan, P., Steinbach, M., Kumar, V. (2005). Introduction to Data Mining. Addison Wesley, 864. URL: https://www-users.cse.umn.edu/~kumar001/dmbook/ php
  3. Semko, A. N., Beskrovnaya, M. V., Vinogradov, S. A., Hritsina, I. N., Yagudina, N. I. (2014). The usage of highspeed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52(3), 655– URL: https://bibliotekanauki.pl/articles/279295
  4. Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.101985
  5. Mygalenko, K., Nuyanzin, V., Zemlianskyi, A., Dominik, A., Pozdieiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1/10(91), 31–37. doi: 10.15587/1729-4061.2018.121727
  6. Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2018). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64, 4, 186–195. URL: http://29yjmo6.257.cz/bitstream/123456789/8734/1/document.pdf
  7. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finelydispersed water. Easten-European Journal of Enterprise Technologies, 2/92(10), 38–43. doi: 10.15587/1729-4061.2018.127865
  8. Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. URL: https://doi.org/10.1051/e3sconf/20186000003
  9. (2020). Reproduced with permission from fire loss in the United States during 2019. National Fire Protection Association, 11. URL: www.nfpa.org
  10. Otrosh, Yu., Semkiv, O., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708, 1, 012065. URL: https://iopscience.iop.org/article/10.1088/1757-899X/708/1/012065/pdf
  11. Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77. URL: http://repositsc.nuczu.edu.ua/handle/123456789/6849
  12. Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy khimii i khimicheskoi tekhnologii, 1, 92–99. URL: http://vhht.dp.ua/wp-content/uploads/pdf/2019/1/ pdf
  13. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R., Bezuhla, Yu., Hrachova, I., Nesterenko, R., Shumilova, А. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. EEJET, 4/10 (106), 37–44. doi: 10.15587/1729-4061.2020.210059
  14. Sadkovyi, V., Rybka, E., Otrosh, Yu. and others. (2021). Fire resistance of reinforced concrete and steel structures. PC TECHNOLOGY CENTER, 180. doi: 10.15587/978-617-7319-43-5
  15. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I., Butenko, T., Bezuhla, Yu., Karpets, K., Kochanov, E. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise, 2/10 (110), 43–50. doi: 10.15587/1729-4061.2021.226692
  16. Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. URL: https://doi.org/10.15587/1729-4061.2017.96694
  17. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: 10.15587/1729-4061.2017.108448
  18. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5/9 (89), 43–48. doi: 10.15587/1729-4061.2017.110092
  19. Caixia, C., Fuchun, S., Xinquan, Z. (2011). One Fire Detection Method Using Neural Networks. Tsinghua Science and Technology, 16(1), 31–35. doi: 10.1016/S1007-0214(11)70005-0
  20. Ding, Q., Peng, Z., Liu, T., Tong, Q. (2014). Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory. Algorithms, 7, 523–537. URL: https://doi.org/10.3390/a7040523
  21. BS EN 54-30:2015 Fire detection and fire alarm systems. Part 30: Multi-sensor fire detectors. Point detectors using a combination of carbon monoxide and heat sensors.
  22. BS EN 54-31:2014 Fire detection and fire alarm system. – Part 31: Multi-sensor fire detectors. Point detectors using a combination of smoke, carbon monoxide and optionally heat sensors.
  23. ISO 7240-8:2014 Fire detection and alarm systems – Part 8: Point-type fire detectors using a carbon monoxide sensor in combination with a heat sensor.
  24. Aspey, R. A., Brazier, K. J., Spencer, J. W. (2005). Multiwavelength sensing of smoke using a polychromatic LED: Mie extinction characterization using HLS analysis. IEEE Sens. J., 5, 1050–1056. Chen, S. -J., Hovde, D. C., Peterson, K. A., Marshall, A. W. (2007). Fire detection using smoke and gas sensors. Fire Safety J., 42, 507–515.
  25. Shi, M., Bermak, A., Chandrasekaran, S., Amira, A., Brahim-Belhouari, S. (2008). A committee machine gas identification system based on dynamically reconfigurable FPGA. IEEE Sens. J., 8, 403–414. URL: http://dx.doi.org/10.1109/JSEN.2008.917124
  26. Skinner, A. J., Lambert, M. F. (2006). Using smart sensor strings for continuous monitoring of temperature stratification in large water bodies. IEEE Sensors J., 6, 1473–1481. URL: http://dx.doi.org/10.1109/JSEN.2006.881373
  27. Cheon, J., Lee, J., Lee, I., Chae, Y., Yoo, Y., Han, G. (2009). A single-chip CMOS smoke and temperature sensor for an intelligent fire detector. IEEE Sens. J., 9, 914–920. URL: https://doi.org/10.1109/JSEN.2009.2024703
  28. Wu, Y., Harada, T. (2004). Study on the Burning Behaviour of Plantation Wood. Scientia Silvae Sinicae, 40, 131. doi: 10.11707/j.1001-7488.20040223
  29. Zhang, D., Xue, W. (2010). Effect of Heat Radiation on Combustion Heat Release Rate of Larch. Journal of West China Forestry Science, 39, 148. URL: https://doi.org/10.1016/j.proeng.2013.08.133
  30. Ji, J., Yang, L., Fan, W. (2003). Experimental Study on Effects of Burning Behaviours of Materials Caused by External Heat Radiation. Journal of Combustion Science and Technology, 9, 139. doi: 10.15587/1729-4061.2018.122419
  31. Peng, X., Liu, S., Lu, G. (2005). Experimental Analysis on Heat Release Rate of Materials. Journal of Chongqing University, 28, 122. doi: 10.1016/j.proeng.2013.08.133
  32. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5/10(95), 25–30. URL: http://repositsc.nuczu.edu.ua/handle/123456789/7483
  33. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise, 3/9(93), 34–40. doi:10.15587/1729-4061.2018.133127
  34. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T., Yashchenko, O., Bezuhla, Yu., Karpets, K., Vasylchenko, R. (2021). Short-term fire forecast based on air state gain recurrency and zero-order Brown model. Eastern-European Journal of Enterprise, 3/10(111), 27–33. doi: 10.15587/1729-4061.2021.233606
  35. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Yu. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4/10(100), 22–29. URL: https://doi.org/10.15587/1729-4061.2019.176579
  36. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K. (2016). Fire Dynamics Simulator Technical Reference Guide. National Institute of Standards and Technology, 3, 6th ed. URL: https://www.fse-italia.eu/PDF/ManualiFDS/FDS_Validation_Guide.pdf
  37. Floyd, J., Forney, G., Hostikka, S., Korhonen, T., McDermott, R., McGrattan, K. (2013). Fire Dynamics Simulator (Version 6) User’s Guide. National Institute of Standard and Technology, 1, 1st ed. URL: https://tsapps.nist.gov/publication/ cfm?pub_id=913619
  38. Polstyankin, R. M., Pospelov, B. B. (2015). Stokhastychni modeli nebezpechnykh faktoriv ta parametriv vohnyshcha v prymishchennyakh. Problemy pozhezhnoyi bezpeky, 38, 130–135.
  39. Heskestad, G., Newman, J. S. (1992). Fire Detection Using Cross-Correlations of Sensor Signals. Fire Safety J., 18, 4, 355–374. URL: https://doi.org/10.15587/1729-4061.2017.117789
  40. Gottuk, D. T., Wright, M. T., Wong, J. T., Pham, H. V., Rose-Pehrsson, S. L., Hart, S., Hammond, M., Williams, F. W., Tatem, P. A., Street, T. T. (2002). Prototype Early Warning Fire Detection Systems: Test Series 4 Results. NRL/MR/6180–02–8602, Naval Research Laboratory, February 15. URL: https://apps.dtic.mil/sti/pdfs/ pdf
  41. Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6/10(90), 50–56. URL: https://doi.org/10.15587/1729-4061.2017.117789