Yuriy Otrosh
National University of Civil Defenсe of Ukraine
https://orcid.org/0000-0003-0698-2888
Andriy Kovalov
National University of Civil Defenсe of Ukraine
https://orcid.org/0000-0002-6525-7558
Roman Purdenko
National University of Civil Defenсe of Ukraine
https://orcid.org/0000-0001-6467-4133
Nina Rashkevich
National University of Civil Defenсe of Ukraine
https://orcid.org/0000-0001-5124-6068
Roman Maiboroda
National University of Civil Defenсe of Ukraine
https://orcid.org/0000-0002-3461-2959
DOI: https://doi.org/10.52363/2524-0226-2022-36-9
Keywords: fire resistance, fire-resistant reinforced concrete structures, fire resistance assessment, numerical modeling, fire protection, fire-resistant coating, LIRA-SAPR
Аnnotation
A structural and logical scheme was developed, which describes the provision of fire resistance of fire-resistant reinforced concrete structures based on the proposed mathematical model and the calculation-experimental method of evaluating the fire resistance of fire-resistant reinforced concrete structures. A mathematical model for evaluating the fire resistance of fire-resistant reinforced concrete structures was developed, which consists of the following stages: selection of the formalization apparatus, construction of the external description, verification of the model's operability, construction of the internal state, verification of operability, and identification of parameters. Initial and boundary conditions were formulated during the construction of the specified models, which allow predicting the fire resistance of the fire-resistant reinforced concrete structure with sufficient accuracy for engineering calculations. A computer model of the stress-strain state of a fire-resistant multi-hollow reinforced concrete floor was developed in the "LIRA-SAPR" software in order to increase the level of fire safety of buildings and structures. A static calculation of the fire-resistant reinforced concrete multi-hollow floor slab was carried out, as a result of which the stress-deformed state of the floor was obtained under the combined action of force and temperature loads. The results of numerical modeling were compared with the results of an experimental study of fire resistance. The accuracy of the developed computer model for evaluating the fire resistance of fire-resistant reinforced concrete structures was checked. Non-linear laws of deformation of the model materials were established, namely: exponential and piecewise linear, which take into account the modulus of elasticity of concrete, the coefficient of linear thermal deformation of concrete, the ultimate relative deformation of concrete, which allow with sufficient accuracy for engineering calculations (up to 5 %) to estimate the fire resistance of fire-resistant reinforced concrete structures.
References
- Otrosh, Yu. A. (2018). Rozrobka pidkhodu do vyznachennya tekhnichnoho stanu budivelʹnykh konstruktsiy pry diyi sylovykh ta vysokotemperaturnykh vplyviv. Visnyk Odesʹkoyi derzhavnoyi akademiyi budivnytstva ta arkhitektury, 71, 54–60. Retrieve from http://repositsc.nuczu.edu.ua/handle/123456789/8399
- Otrosh, Yu. A., Ruban, A. V., Haponova, A. S., Morozova, D. M. (2019). Pidkhid dlya vyznachennya tekhnichnoho stanu zalizobetonnykh konstruktsiy pry sylovykh i vysokotemperaturnykh vplyvakh. Problemy pozhezhnoyi bezpeky, 46, 148–154. Retrieve from http://repositsc.nuczu.edu.ua/handle/123456789/13532
- Xu, Q., Han, C., Wang, Y. C., Li, X., Chen, L., & Liu, Q. (2015). Experimental and numerical investigations of fire resistance of continuous high strength steel reinforced concrete T-beams. Fire Safety Journal, 78, 142–154. https://doi.org/10.1016/j.firesaf.2015.09.001
- Rafika, Saudagar Ashpak and Hashmi, A. K. (2021). Review on Fire Resistance of Reinforced Concrete Column. International Research Journal of Engineering and Technology (IRJET), 8, 4, 1881–1887. Retrieve from https://www.irjet.net/archives/V8/i4/IRJET-V8I4354.pdf
- de Souza, R. C. S., Andreini, M., La Mendola, S., Zehfuß, J., & Knaust, C. (2019). Probabilistic thermo-mechanical finite element analysis for the fire resistance of reinforced concrete structures. Fire Safety Journal, 104, 22–33. Retrieve from https://doi.org/10.1016/j.firesaf.2018.12.005
- Zheng, W., Hou, X., & Wang, Y. (2016). Progress and prospect of fire resistance of reinforced concrete and prestressed concrete structures. J. Harbin Inst. Technol, 48, 1–18. doi:10.11918/j.issn.0367-6234.2016.12.001
- Ibrahimbegovic, A., Boulkertous, A., Davenne, L., Muhasilovic, M., & Pokrklic, A. (2010). On modeling of fire resistance tests on concrete and reinforced-concrete structures. Computers and concrete, 7(4), 285–301. doi: https://doi.org/10.12989/cac.2010.7.4.285
- Tamrazyan, A. G., Mineev, M. S., & Urasheva, A. (2020). Fire Resistance of Reinforced Concrete Corrosion-Damaged Columns of the "Standard" Fire. In Key Engineering Materials, 828, 163–169. doi:10.4028/www.scientific.net/KEM.828.163
- Cvetkovska, M., Knezevic, M., Xu, Q., Chifliganec, C., Lazarevska, M., & Gavriloska, A. T. (2018). Fire scenario influence on fire resistance of reinforced concrete frame structure. Procedia engineering, 211, 28–35. Retrieve from https://doi.org/10.1016/j.proeng.2017.12.134
- Sasani, M. (2014). Progressive collapse resistance of reinforced concrete structures. Blast Mitigation. Springer, New York, NY, 331–350. doi:10.1007/978-1-4614-7267-4_11
- Zheng, Y. Q., & Zhuang, J. P. (2011). Analysis on fire resistance of reinforced concrete Wall. In Advanced Materials Research, 243, 797–800. Retrieve from https://doi.org/10.4028/www.scientific.net/AMR.243-249.797
- Kovalʹov, A. , Otrosh, Yu. A., Danilin, O. M. (2019). Eksperymentalʹni doslidzhennya vohnestiykosti zalizobetonnykh perekryttiv z systemoyu vohnezakhystu. Problemy pozhezhnoyi bezpeky: zb. nauk. pr., 45, 73–78. Retrieve from http://repositsc.nuczu.edu.ua/handle/123456789/9243
- Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Yu. et. al.; Sadkovyi, V., Rybka, E., Otrosh, Yu. (Eds.) (2021). Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 180. doi: http://doi.org/10.15587/978-617-7319-43-5